Large Neighborhood Search and Structured Prediction for the Inventory Routing Problem
Louis Bouvier  1@  , Guillaume Dalle  2@  , Axel Parmentier  2@  
1 : Centre dÉnseignement et de Recherche en Mathématiques et Calcul Scientifique
Ecole des Ponts ParisTech
2 : CERMICS, Ecole des Ponts
Ministère de la Transition écologique et solidaire

We consider a large-scale multi-depot multi-commodity Inventory Routing Problem (IRP) to model the packaging return logistics of a major European car manufacturer. No algorithm is known to properly scale to our context. We propose a Large Neighborhood Search (LNS) based on common routing neighborhoods and two new ones: the reinsertion of a customer and a commodity in the IRP solution. We also try to bypass the heavy computations of the LNS leveraging recent ideas in Machine Learning for Operations Research in structured prediction.


Personnes connectées : 5 Vie privée
Chargement...