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1 Introduction
We consider the packaging return logistics of a large scale car manufacturer, representing dozens
of millions of euros and hundreds of thousands of tons of CO2 per year. This car manufacturer
has a network of depots (factories) sending commodities (packaging) to customers (suppliers)
by truck. This problem can be modelled as a multi-depot multi-commodity Inventory Routing
Problem (IRP) [4]. The main challenges we face are the size of the car manufacturer’s network
(with about 600 customers here compared with 50 maximum in the instance library of the
literature [1]), the multi-depot aspect (leading to routing complexity), the multi-commodity
aspect (with 30 concurrent commodities leading to binding constraints for the truck loading
whereas most of the literature studies focus on the single-commodity framework with isolated
cases of up to 5 commodities) and the large horizon (20 days compared with the 3 − 6 days
often considered in the previous studies). Our instances are thus one order of magnitude larger
than the ones addressed in the IRP literature. We emphasize that no algorithm is known to
properly scale to our context.

2 Contribution
Benchmark algorithm We first implement a two-step heuristic inspired by the literature
and use it as benchmark algorithm. An approximate flow formulation first decides who sends
what to whom, when and which quantity. A local search based on the adaptation of neigh-
borhoods of the literature then builds the truck routes and improves the solution of the first
step.

Two new large neighborhoods If this benchmark algorithm performs well on instances
from the literature, it reaches its limits on ours due to their large number of commodities and
depots. We therefore introduce a Large Neighborhood Search (LNS) with two new neighbor-
hoods. The first one solves a relaxation of the problem of the optimal reinsertion of a customer
in an IRP solution. We formulate a MILP that relaxes the newly-created routes combina-
torics. The second one solves a MILP that approximates the problem of the reinsertion of a
commodity in the IRP solution, where the newly-created routes are restricted and their costs
approximated. Both of them are solved in a few seconds on our large-scale instances. We
combine them with 10 route neighborhoods to build a LNS.

Structured prediction For another use case, the car manufacturer needs to quickly find
good solutions to the IRP. Our two-step greedy heuristic is a candidate for this requirement.
Indeed, we observe that if we replace the flow solution by the one deduced from our LNS
output, we almost reach the performance of our LNS with the greedy heuristic. We thus



design a structured prediction algorithm to learn clever costs of the routing arcs. To make
the parameter estimation problem differentiable, we use a Fenchel-Young loss [3] and perturb
the objective of the minimum cost flow problem with noise, as proposed by [2]. Our goal is to
imitate the solutions provided by our LNS, while bypassing its heavy computations.

3 Results and perspectives
We extract real data from the car manufacturer’s files, leading to 85 pre-processed instances
at the European scale (see Table 1). Our LNS is able to significantly improve the solution of
the two-step greedy heuristic within about one hour of computations. We reduce the gap by
30% on average over the 85 instances, compared with the greedy heuristic benchmark. Most
of the gains are linked to the routing and customer shortage costs, and obtained with the two
large reinsertion neighborhoods in our LNS. We emphasize no good lower bound is known for
our IRP in the literature. Therefore, even though gaps enable us to compare our algorithms,
their values are not sufficient to assess absolute performance.

Number of instances 85
Average number of depots 15

Average number of customers 602
Average number of commodities 30

Average horizon 21
Average cost after greedy-heuristic (benchmark) 2 421 050

Average cost after LNS 2 005 966
Average gap reduction after LNS 31%
Average LNS computation time 1 73 minutes

TAB. 1: Results of the LNS compared with the greedy heuristic
(benchmark).

We also get promising learning results. With a basic linear embedding, we manage to
outperform the relaxation-based benchmark algorithm. Leveraging the expressiveness of graph
neural networks or graph kernels, we hope to reach the performance of the LNS. We could
also optimize the order and choice of the neighborhoods in the LNS, taking advantage of
reinforcement learning techniques. Finally, computing stronger lower bounds is yet another
challenge we intend to tackle.
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1the stopping criterion is a threshold on the cost gain after each LNS iteration


