Monte Carlo Search Algorithms for Network Traffic Engineering
Chen Dang  1, 2@  , Cristina Bazgan  3@  , Tristan Cazenave  2@  , Morgan Chopin  1@  , Pierre-Henri Wuillemin  4@  
1 : Orange Labs
Orange Labs DATA
2 : Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision
Université Paris Dauphine-PSL, Centre National de la Recherche Scientifique : UMR7024
3 : LAMSADE
Université Paris Dauphine - Paris IX
4 : Laboratoire dÍnformatique de Paris 6  (LIP6)  -  Site web
Université Pierre et Marie Curie - Paris 6, Centre National de la Recherche Scientifique : UMR7606
4 Place JUSSIEU 75252 PARIS CEDEX 05 -  France

The aim of Traffic Engineering is to provide routing configurations in networks such that the used resources are minimized while maintaining a high level of quality of service (QoS). Among the optimization problems arising in this domain, we address in this paper the one related to setting weights in networks that are based on shortest path routing protocols (OSPF, IS-IS). Finding weights that induce efficient routing paths (e.g that minimize the maximum congested link) is a computationally hard problem.

We propose to use Monte Carlo Search for the first time for this problem. More specifically we apply Nested Rollout Policy Adaptation (NRPA). We also extend NRPA with the force_exploration algorithm to improve the results. In comparison to other algorithms NRPA scales better with the size of the instance and can be easily extended to take into account additional constraints (cost utilization, delay, ...) or linear/non-linear optimization criteria. For difficult instances the optimum is not known but a lower bound can be computed. NRPA gives results close to the lower bound on a standard dataset of telecommunication networks.


Personnes connectées : 5 Vie privée
Chargement...