Tabu Search Exploiting Local Optimality in Binary Optimization
Said Hanafi  1@  
1 : INSA Institut National des Sciences Appliquées Hauts-de-France
Institut National des Sciences Appliquées (INSA)

A variety of strategies have been proposed for overcoming local optimality in metaheuristic search. This paper examines characteristics of moves that can be exploited to make good decisions about steps that lead away from a local optimum and then lead toward a new local optimum. We introduce strategies to identify and take advantage of useful features of solution history with an adaptive memory metaheuristic, to provide rules for selecting moves that offer promise for discovering improved local optima. Our approach uses a new type of adaptive memory based on a construction called exponential extrapolation. The memory operates by means of threshold inequalities that ensure selected moves will not lead to a specified number of most recently encountered local optima. Associated thresholds are embodied in choice rule strategies that further exploit the exponential extrapolation concept. The Alternating Ascent (AA) Algorithm incorporates new strategies to exploit local optimality within the context of binary combinatorial optimization. Together these produce a threshold based AA algorithm that opens a variety of research possibilities for exploration


Personnes connectées : 27 Vie privée
Chargement...