A tailored Machine Learning Surrogate to improve Rotorcraft Trajectory Design
1 : Université de Toulouse
Ecole Nationale de l'Aviation Civile - ENAC
2 : Université de Toulouse
(ÉNAC - MAIAA)
Ecole Nationale de l'Aviation Civile - ENAC
F-31055 Toulouse, France. -
France
3 : Laboratoire de Mathématiques Appliquées, Informatique et Automatique pour l'Aérien
(MAIAA)
-
Site web
Ecole Nationale de l'Aviation Civile - ENAC
ENAC 7 avenue Edouard Belin CS 54055 31055 TOULOUSE Cedex 4 FRANCE -
France
4 : Massachusetts Institute of Technology
In this study, we aim at designing rotorcraft trajectories whose associated noise footprint is minimized. The values for the objective function are provided by an industrial black-box. Therefore, a method that is adapted to Black-box Optimization (MADS) is used to solve this problem. We propose a neural network surrogate defined thanks to our knowledge of the problem to replace the expensive black-box. Numerical results using the proposed surrogate within the MADS algorithm are promising in terms of both computational time savings and accuracy of the computed solution.