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1 Introduction

Since the late 1950s, lot sizing problems have been extensively studied by researchers and
practitioners, leading to a significant body of literature. While deterministic lot sizing problems
constitute the majority of these studies, dealing with uncertainties has been a challenging task.
As Brahimi et al. [2] summarize in their review, the demand quantity is the parameter that
is mostly considered as uncertain in the stochastic lot sizing literature. Even though they are
quite common in practical settings, stochastic lead times have been rarely studied, although
[3, 4, 5] can be given as examples.

A significant limitation in stochastic lot sizing is that stochastic demands are assumed to
be independent random variables, i.e the correlation between stochastic demands in different
periods, which usually exists in real-life settings, is ignored. To build this correlation, Akartunali
and Dauzere-Péres [1] consider that demand quantities are deterministic but their timing is
stochastic. In [1], not only novel way of modeling uncertainty on demand is presented but also
dynamic programs are proposed for several cases to solve the single-item dynamic lot sizing
problem.

In this work, we extend the work of [1] to multiple items and propose appropriate solution
approaches.

2 Problem Statement

In this work, the multi-item capacitated lot sizing problem with stochastic demand timing
is addressed. Accordingly, the production horizon is divided into T periods and multiple items
(N) are produced. Each period has a given capacity. The quantity and the period of the
deterministic demands of item k (Dy;) are known in advance. No backlog or lost sale is allowed
for deterministic demands. The quantity of the stochastic demands (d;) of item k(i) is also
known. However, the timing of demand d; is stochastic within a given time interval [I%, u’]
C[1,T], where it is certain that d; will fully occur at once, with a probability of pi > 0 for
each period t € [I,u'] and such that 3%, (pi) = 1 and pi = 0 for t < I* — 1 and t > u’ + 1.
Backlog is allowed for the stochastic demand d; until period u’, and d’ can be satisfied from
the inventory carried from periods before [°.



The objective of the problem is to determine a production plan that minimizes the total
expected cost, including set-up, production, holding and backlogging costs and satisfying the
deterministic and randomly occurring stochastic demands.

3 Computational experiments

To validate and analyze the proposed Mixed Integer Linear Integer Programming model,
instances have been defined from the well-known lot sizing instances of Trigeiro et al. [6]
by tailoring them according to the settings of our problem. In particular, the probability of
occurrence of a stochastic demand in any period ¢ C [I*,u!] is normally distributed.

The preliminary results show that an increase in the number of stochastic demands lead
to an increases of the computational complexity of the model. This finding motivates us to
develop heuristic algorithms to solve the problem for large instances.
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