
Answer Set Programming based haplotype phasing
of long reads for polyploid species - ROADEF 2022

Clara Delahaye1, Jacques Nicolas1

Univ. Rennes, Inria, CNRS, IRISA, F-3500 Rennes, France
{clara.delahaye, jacques.nicolas}@irisa.fr

Mots-clés : Constraint logic programming, Partitioning, Phasing, DNA sequencing data

1 Biological context and motivations
Living organisms have their DNA organized into chromosomes, each complete set of chromo-
somes being present in two (for diploid organisms such as humans and most animals) or more
copies (for polyploid organisms like many crops). We call haplotype each copy within a given
set. Haplotypes are highly similar, but show biologically important differences called variants,
that can be of high interest as they may be involved into biological processes or genetic diseases.
However most of genome representations available today are made of a mix of all haplotypes,
thus masking variants and leading to missing or erroneous information.

Our aim is to build reference sequences for each haplotype of a genome, taking as input
genome subsequences called reads issued from a sequencing machine. Roughly, reads can either
be short and accurate, or long and erroneous. In this paper, we consider long reads data, which
allow to better reconstruct haplotypes, by observing series of correlated variants. Given a set
of positions, and the variants at these positions for each read, the haplotype phasing task we
consider consists in determining the true variant for each haplotype at each position.

2 Problem formalization
We now describe in mathematical terms the challenge of polyploid haplotype phasing. A
chromosome can be represented by k haplotypes H1, H2, ..., Hk and n positions of variation,
with k and n fixed. Each haplotype H is represented by a vector of variants v. We note
H(p) = v, where p ∈ [1, n]. The goal is to reconstruct them from an input set of reads. A
read R is a subset of observed variants of an unknown haplotype. We note R(p) = v, where
the set of p belongs to an interval I(R) of [1, n] . Given two reads R1 and R2, two haplotypes
H1 and H2 are said locally different with respect to R1 and R2 if H1(p) 6= H2(p) for some
p in I(R1) ∩ I(R2). A certain percent of variants may be erroneous, due to the sequencing
technology to obtain reads. Finally, the problem is defined as:

Given:

• a global ploidy k, fixing a maximum number of different values per position;
• a set of N reads {R(p) = v}, where p belongs to an interval I(R) of [1, n];
• a graph on reads with overlapping intervals, with two types of edges, different and similar.

Find:
A k-partition of reads to form k haplotypes. The partition must minimize:

• the number of pairs (R, p) for reads R in haplotype H, for which R(p) 6= H(p);
• the number of different read pairs assigned to a same haplotype;
• the number of similar read pairs assigned to locally different haplotypes.



3 State of the art
Most methods currently available are only designed for short reads and/or for diploid species.
As said previously, long reads offer assets on haplotype phasing over short ones but such data
are more recent and methods are lacking to realize their full potential. Concerning ploidy,
haplotype phasing of diploid genomes is now quite well handled as it is reduced to a binary
choice. Reasoning is more complex in the case of polyploid phasing. A common intuition is
to assume that reads stemming from a same haplotype will be more similar than reads from
different haplotypes. Thus, some common strategies rely on similarity between reads, using for
example a similarity scoring function [3] or clique enumeration in an overlap graph of reads [1].

4 Method
Here we propose both a formalization and a combinatorial method for diploid and polyploid
haplotype phasing of long read data. We address haplotype phasing as an optimization problem
and use Answer Set Programming [2] (ASP), with clingo system to solve it. Rather than
providing a unique and likely erroneous answer to this hard problem, the ASP framework
allows to reason on the set of possible solutions. Moreover, ASP is a high-level declarative
language that offers both efficiency (inspired on SAT-solver techniques) and expressiveness
(more than ILP for example). One can easily express preferences and get a global view of
confident and ambiguous positions in phased regions.

As the phasing problem is highly combinatorial, we need to pre-process the data to reduce
the search space. A trivial pruning condition is to remove variant positions for which all values
in reads are identical, as they do not provide any relevant information for phasing. Then we
construct a graph of read overlaps and split it into connected components that will be phased
independently, in order to reduce the size of each phasing problem.

For the phasing step, we use constraints and minimization criteria based on differences and
similarities between reads (see definition of the similarity score bellow), taking into account
potential unknown errors in reads. The phased fragments are then re-assembled to produce
the final haplotypes. The overall (still ongoing) method will be designed in two complementary
parts: a rather traditional one computing similarities between reads; and a combinatorial one
that will interact with the user to explore the set of possible phasing solutions.

We define a similarity score between two reads R1 and R2 as the sum of similarity score of
their variants on shared positions:

sim(R1, R2) =
∑

p∈I(R1)∩I(R2)
ind(R1(p), R2(p)) where ind(v, w) =

{
+1 if v = w

−1 if v 6= w

We then produce the graph on reads by setting two thresholds thigh > tlikely for labelling
edges between two reads (Ri, Rj) sharing enough positions:

label(Ri, Rj) =
{

highly similar (different) if sim(Ri, Rj) ≥ thigh (≤ −thigh)
likely similar (different) else if sim(Ri, Rj) ≥ tlikely (≤ −tlikely)

References
[1] Jasmijn A. Baaijens et al. “De novo assembly of viral quasispecies using overlap graphs”.

In: Genome Research 27.5 (Apr. 2017), pp. 835–848. doi: 10.1101/gr.215038.116. url:
https://doi.org/10.1101/gr.215038.116.

[2] Martin Gebser et al. “Answer Set Solving in Practice”. In: Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning 6.3 (Dec. 2012), pp. 1–238. doi: 10.2200/
s00457ed1v01y201211aim019. url: https://doi.org/10.2200/s00457ed1v01y201211aim019.

[3] Sven D. Schrinner et al. “Haplotype threading: accurate polyploid phasing from long
reads”. In: Genome Biology 21.1 (Sept. 2020). doi: 10.1186/s13059-020-02158-1. url:
https://doi.org/10.1186/s13059-020-02158-1.


