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Suppose that we are interested in solving a hard operations research problem

min
x∈X (Γh)

fh(x; Γh) (h)

that is variant of a classic operations research problem

min
x∈X (Γe)

f e(x; Γe) (e)

for which a practically efficient algorithm Ae is available in the literature. The letters h and e
stand for hard and easy. Γh and Γe respectively denote the instances considered. We indicate
the instance Γ in the definition of the objective function and the set of admissible solution
because several instances of the same problem will be considered simultaneously in the learning
algorithm. The approach proposed is illustrated on Figure 1. A machine learning predictor ϕθ

is used to encode the hard problem instance Γh into an instance of Γe. Algorithm Ae then finds
an optimal solution xe. Finally, a decoding algorithm ψ is used to rebuild a solution xh for Γh

from xe. The encoder ϕθ is a statistical predictor and its computation is very fast. The easy
problem (e) is chosen because even large instances are tractable with a (potentially advanced)
algorithm Ae from the literature. For instance, Ae can involve the resolution of a tractable
MILP formulation with a solver. Finally, the decoder ψ is not mandatory and is typically a
descent heuristic. Hence, the learned algorithm is sufficiently fast to be applied online (on a
single instance). And it can be applied many times (∼ 1000 times) to several instances during
the CPU intensive but offline learning phase.

Previous contributions [2, 3] show the practical advantage of this approximation paradigm :
appropriate ϕθ and (e) retain most of the structure of (h) and make the hard problem ins-
tance tractable with Ae. And their numerical experiments show that the learned algorithm is
practically efficient and that it meets the scaling challenge [1, Section 6.2]. But they underline
two challenges that must be met to make the approach work. First, we must design ϕθ in
such a way that the solution returned has a small objective fh(xh,Γh). And second, we must
formulate the learning problem and propose a learning algorithm. The initial contributions
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FIG. 1 – ML to approximate hard problems by well-solved ones



illustrate on specific applications how to build and learn approximations, but do not provide a
generic method to address these challenges. In this work, we formalize the notion of structured
approximation of one problem by another, propose generic methods to design and learn such
approximations, provide theoretical guarantees on their performances, and show their practical
performance through numerical experiments.

We make the following contributions :
1. We formalize the notion of structure of a problem in order to introduce the notion of

structured approximation of an operations research problem (h) by another one (e). Prac-
tically, such an approximation of (h) is given by an easy problem (e) sharing the same
structure, as well as an encoder ϕθ and a decoder ψ that satisfy several properties.

2. We introduce a formulation of the learning problem and algorithms to solve it. We expect
them to work on any structured approximation such that the dimension of θ is moderate
(≤ 100) and the solution pipeline can be applied several hundred to several thousand
times during the learning phase. Contrarily to previous formulations of the learning
problem which required a training set containing instances of (h) as well as an optimal
(or at least a good) solution of each instance, this formulation requires only instances
of (h) but no solution. This is a practical advantage because no algorithm for the hard
problem is required.

3. We demonstrate the practical performance of our learning algorithm on the applications
of the literature [2, 3] : Our learned algorithm (which has no access to optimal solutions of
instances in the training set) matches the performance of those of the literature (which
have access to optimal solutions), and are therefore state-of-the-art heuristics for the
problems considered.

To the best of our knowledge, the literature on machine learning algorithms for combina-
torial optimization problems has focused on the practical efficiency of these heuristics and no
theoretical guarantees on the learning algorithms have been proposed [1, Section 6.2]. More
precisely, convergence results for the estimator of θ they use may exist in the statistical lear-
ning literature, but the consequences of these results in terms guarantees on the optimality
gap of the solution returned by the learned algorithm have not been studied. Since we propose
structured approximations, it is natural to wonder if and at which speed our learning algorithm
converges towards the best approximation.

4. Leveraging tools from statistical learning theory, we prove the convergence of the learning
algorithm toward the approximation with the best expected loss, and an upper bound
on the convergence speed that does not depend on the diversity instances structures.

5. We also prove that, if ϕθ is sufficiently regular and there exists a parameter θ̃ such that
the easy problem objective approximate well the hard problem objective, then with high
probability on the training sample, the learned algorithm is an approximation algorithm
for the hard problem (h) whose approximation ratio improves with the size of the training
set.
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