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1 Introduction
In this study we propose an algorithm for the solution of the following mixed-integer opti-

mization problem :
min
x,y

f(x, y) (1a)

x ∈ Ωc, y ∈ Ωz (1b)
where f : [Rn1 ×Zn2 ] −→ R, Ωc = {x ∈ Rn1 | xlb ≤ x ≤ xub} and Ωz = {y ∈ Zn2 | ylb ≤ y ≤ yub}.
We denote the mixed-integer box constraints as Ωm = {(x, y) | x ∈ Ωc, y ∈ Ωz}. In addition
f(x, y) is a mixed-integer black-box function which exhibits combinatorial properties at fixed
values of x. Black-box are often expensive-to-evaluate and do not present analytical form, which
means that no gradient nor second-order information can be used to optimize them. Black-box
functions arise in several settings, such medical imaging, operations research, and, specially
in computer simulation programs. Several methodologies have been developed to solve black-
box instances including heuristics (i.e evolutionary algorithms, tabu search) and derivative-
free optimization (DFO) methods. Within DFOs, surrogate-based approaches appear to be
successful in the computation of local and global solution of black-box optimization programs.

Surrogate-based methods consist in the computation of a (surrogate) model which approxi-
mates the black-box function, via regression or interpolation. Different types of models can
be used to approximate a black-box function, including low-order polynomials, radial basis
functions (RBF) and kriging. To the extent of our knowledge, none of these approximations
have been studied for mixed-integer functions with special combinatorial properties on their
integer elements.

One example of such problems is the mixed-integer generalization ofM ♮ discrete functions [1].
M ♮ are integrally convex functions that display interesting properties such as supermodularity,
descent directions and minimizers. We aim to develop a methodology that takes advantage
of such features and the existence of convergent zero-order algorithms for the optimization of
given functions when only integer variables are considered.

2 Algorithm Overview
Our proposed algorithm is designed to solve problem (1) via hybrid surrogate approximation

and the use of the difference of convex algorithm (DCA) [2]. The principle behind this dual
methodology consists in the following reformulation :

min
x∈Ωc,y∈Ωz

f(x, y) = min
x∈Ωc

ψ(x)



Let ψ : Rn1 → R be defined as infy∈Ωz f(x, y). We emphasise that function ψ(x) can be
represented as the difference of two functions

ψ(x) = λk

2 ∥x∥2 −
[
λk

2 ∥x∥2 − ψ(x)
]

where λk > 0. Let ϕ(x) be defined as ϕ(x) =
[

λk

2 ∥x∥2 − ψ(x)
]
. If λk is sufficiently large, ϕ(x)

becomes convex, which allow us to use the standard DCA method for the optimization of ψ(x).
The DCA consists in the following repetition of operations :

1. Computation of a subgradient w of ϕ(x) at point xk.
2. Computation of a new candidate solution xk+1 = argminx∈Ωc

{λk∥x∥
2 − ⟨w, x− xk⟩}

These procedures are repeated until ∥xk+1 − xk∥ < ϵtol. The main difficulty for using DCA
for the solution of problem (1) is the lack of a deterministic formula for the computation of
the subgradients of ϕ(x). Nonetheless this problem can be overcome by considering accurate
approximations of these subgradients (often called ϵ-subgradients) which can be estimated
using fully-linear or fully-quadratic surrogates of ψ(x). The DCA has been proved to be also
convergent in the case where ϵ-subgradients are used [3, 4].
We modified the DCA and combined it with a first order model-based trust-region method,
which consists in the repetition of the following list of operations :

1. Criticality test : Evaluation of convergence into stationary points.
2. Candidate computation : A new candidate is generated by solving a surrogate that consi-

ders the ϵ-subgradient information.
3. Candidate acceptance : If the new candidate yields a significant improvement in the

objective it is accepted and the optimization domain (trust-region) is extended. Otherwise
it is rejected.

4. Model maintenance : In case of a successful candidate we compute a new surrogate ap-
proximation at the point xk+1. If the iteration was unsuccessful, we reduce the domain
in which the optimization is performed aiming to reduce the error in the surrogate ap-
proximation.

We highlight that this algorithm is proved to be convergent to a type of mixed-integer stationary
point as it preserves the basic properties of first-order surrogate approximation [5].
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