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1 Introduction

In this paper, we use a data-driven Wasserstein distributionally robust framework to consider
uncertain parameters in optimization problems.

Distributionally robust optimization (DRO) is an approach to optimization under uncer-
tainty that assumes only partial information on the probability distribution of the uncertain
parameters. For example, in transportation optimization problems, the probability distribution
of the uncertainties on road traffic is unknown (even if it can be estimated through historical
records). DRO can be seen as the unification of stochastic and robust optimization. DRO offers
more robustness than stochastic optimization because instead of considering that we know the
real distribution, we optimize inside of a set of candidate distributions. In general, DRO is
less conservative than optimizing the worst-case scenario in robust optimization because an
historical data can contain outliers due to errors or bad measures. When the distribution set is
reduced to one single distribution D, DRO is equivalent to stochastic optimization using D as
the real distribution. Unlike stochastic optimization, we assume that the decision maker does
not know the real distribution of the uncertainties. Instead, we consider that it belongs to an
ambiguity set of distributions and we want to be robust on this set of distributions. In order
to construct this set of distributions, we compute the empirical distribution with a training
samples dataset, assuming that each sample can appear with the same probability. We then
consider a ball of distributions around that distribution. The metric we use to define that ball
is the Wasserstein metric that gives a distance value between two distributions. This particu-
lar case of DRO is called data-driven Wasserstein DRO (WDRO). As a generalization of the
stochastic optimization and the robust optimization, WDRO is obviously NP-hard. Recently,
data-driven Wasserstein DRO gained attention in operations research and machine learning
literature [3, 4, 6].

In the case of a combinatorial optimization problem when only the cost function is affected by
uncertainties, we show that WDRO counterpart of a polynomial problem remains polynomial.
More precisely, we prove that, if the optimization problem can be written as a 0-1 integer linear
program with n variables, the complexity of solving the distributionally robust counterpart is
at most n + 1 times the complexity of solving the original problem. This means that every
complexity results (related to polynomiality) of an optimization problem is kept for its WDRO
counterpart. For example, the WDRO counterpart of any α-approximable NP-hard 0-1 discrete
problem is also α-approximable. Our theoretical results show that under certain conditions, the
WDRO counterpart of a combinatorial problem is not much harder than the original problem
which means that WDRO is a powerful framework to consider uncertainties in combinatorial
problems without being expensive. 1



2 Definition of the framework
This section is dedicated to defining the necessary notations and concepts. We first review

models for optimizing under uncertainty, including the Distributionally Robust Optimization
and the data-driven Wasserstein DRO. We finish by explaining how we transform a combina-
torial problem into an instance of the WDRO problem.

2.1 Optimizing under uncertainty

Stochastic optimization and robust optimization are two classic frameworks to model uncer-
tainty in optimization problems. Distributionally robust optimization is an alternative frame-
work that unifies both approaches.

In this part, we consider an optimization where x ∈ X ⊂ {0; 1}n is the decision vector and
h is the cost function we want to optimize. This function is subject to uncertainty. We write
ξ ∈ Ξ ⊂ Rn the uncertain parameter and h(x, ξ) as the objective value of x given a fixed value
ξ of uncertainty.

Stochastic optimization In stochastic optimization, we assume that the exact probability
distribution P ∗ of ξ is known. The random variable associated to uncertainties is called ξ̃.
We want to compute a feasible solution x minimizing the expected value of h(x, ξ̃). In other
words :

inf
x∈X

EP ∗ [h(x, ξ̃)]

Robust optimization In robust optimization, we consider that only the support of the
uncertain parameters is known which means that we know all the different values that can be
taken by the uncertain parameters. The objective is to compute a feasible solution x minimizing
the maximum possible value of h(x, ξ).

inf
x∈X

sup
ξ∈Ξ

h(x, ξ)

Distributionally robust optimization Distributionally robust optimization is an approach
to optimization under uncertainty that assumes only partial distributional information. Unlike
the classic approach of stochastic optimization, in DRO, the exact probability distribution P ∗

is unknown. Instead, we assume that it belongs to an ambiguity set P of distributions construc-
ted from the partial information. We compute a feasible solution x minimizing the maximum
expected value of h(x, ξ̃) among all the possible distributions. In some way, DRO is a robust
optimization model where Ξ is replaced by the set P of distributions.

inf
x∈X

sup
Q∈P

EQ[h(x, ξ̃)]

2.2 Data-driven Wasserstein DRO

The exact probability distribution P ∗ can be estimated through a finite sample dataset.
A natural method is the sample average approximation (SAA) where P ∗ is replaced by the
empirical distribution P̂N obtained by averaging of the sample dataset.

Definition 1 Given a list Ξ̂ of N values from Ξ. We define the empirical distribution P̂N with
1
N

∑
ξ∈Ξ̂

δξ where δξ is the Dirac distribution at ξ ∈ Ξ.

From this empirical distribution, we build our set of distributions P with a ball of distri-
butions centered at P̂N . The metric used to define that ball is the p-Wasserstein distance. We
define with M(Ξ) the set of all probability distributions on Ξ.



Definition 2 (p-Wasserstein distance) Let Q1, Q2 ∈M(Ξ) and 1 ≤ p ≤ +∞.

dWp(Q1, Q2) = inf
Π∈Γ(Q1,Q2)

∫
Ξ2
∥ξ1 − ξ2∥pΠ(dξ1, dξ2)

where Γ(Q1, Q2) is the set of distributions on Ξ× Ξ with marginal Q1 and Q2.

The Wasserstein distance can be used to compare any two distributions Q1 and Q2 that can
be discrete or continuous. It can be interpreted as the minimum transportation cost for moving
from the probability density function of Q1 to the one of Q2. The p-norm is used to evaluate
the cost of moving some probability from the vector ξ1 to ξ2.
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FIG. 1 – Transformations from histogram Q1 (upper left) to histogram Q2 (upper right) re-
presenting probabilities of apparition of three vectors (−1,−1), (0, 0) and (1, 1). Wasserstein
distance can be visualized as the best transportation for moving from Q1 to Q2. In the three
lower histograms, we can see two possible transformations of the histogram Q1 to histogram
Q2. The second plot seems more efficient since it only moves a portion of the second bar of Q1,
whereas, in the first plot, all the three bars are moved, including the whole second bar. The cost
from moving a portion from one bar to another depends on the norm we use. For instance, assu-
ming we use the 2-norm, moving a fraction δ from (1, 1) to (0, 0) costs δ·∥(1, 1)−(0, 0)∥2 = δ

√
2.

In this example, the cost of the upper transformation would be 0.3
√

8+0.15
√

2+0.5
√

2 ≃ 1.77.
The cost of the lower transformation would be 0.35

√
2 ≃ 0.5. The p-Wasserstein distance is the

minimum cost (using the p-norm) obtained by the best transformation among all the transfor-
mations possible from Q1 to Q2. In this case, the distance is at most 0.5.

Definition 3 (Wasserstein ball of radius ε > 0 centered at P̂N )

Bp,ε(P̂N ) :=
{

Q ∈M(Ξ) : dWp(P̂N , Q) ≤ ε
}

The Wasserstein ball of radius ε centered at P̂N contains all the probability distributions that
are at most at a distance of ε using the Wasserstein metric. When ε = 0, it only contains the
empirical distribution P̂N .

2.3 Transform a problem into a WDRO problem

We consider a combinatorial optimization problem Pb written as a 0-1 ILP :

Pb : inf
x∈J0;1Kn

Ax≤b

cx



The vector c is subject to uncertainty. As done previously, Ξ is the set of values that can be
taken by this parameter and ξ̃ is the random variable associated to this uncertainty. The exact
distribution P ∗ is not known but a finite sample dataset Ξ̂ is given from which we deduce the
empirical distribution P̂N .

Finally, given an integer 1 ≤ p ≤ +∞ and a real ε > 0, we define the (p, ε)-WDRO-Pb
problem.

(p, ε)-WDRO-Pb : inf
x∈J0;1Kn

Ax≤b

sup
Q∈Bp,ε(P̂N )

EQ[ξ̃x]

3 Reformulation

We reformulate the problem by simplifying the expression sup
Q∈Bp,ε(P̂N ) EQ[ξ̃x] into a de-

terministic term. We first give some intermediate lemmas. Proofs of the lemmas are omitted
for lack of space.

Lemma 1 Let P and Q be two distributions on Ξ. Then ∥EP [ξ̃]− EQ[ξ̃]∥p ≤ dWp(P, Q)

Lemma 1 can be proven using triangle inequality for integrals and the definition of the
p-Wasserstein distance.

Lemma 2 sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] = sup
∥∆∥p≤ε

E
P̂N

[x(ξ̃ + ∆)]

Lemma 2 transforms the constraint on the Wasserstein ball into a constraint on a norm of a
vector ∆.

We now prove our main theorem that reformulates the probabilistic objective function of
(p, ε)-WDRO-Pb into a deterministic objective function. Recall that the dual norm of ∥.∥p is
∥.∥q with q such as 1

p + 1
q = 1 (p (resp q) can be infinite if q = 1 (resp. p = 1)) which means

that for any vector z ∈ Rn, ∥z∥q = sup{zx | ∥x∥p ≤ 1}.

Theorem 1 inf
x∈J0;1Kn

Ax≤b

sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] = inf
x∈J0;1Kn

Ax≤b

∥x∥q · ε + 1
N

∑
ξ∈Ξ̂

xξ

Proof : Let x ∈ J0; 1Kn such that Ax ≤ b.

sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] = sup
∥∆∥p≤ε

E
P̂N

[x(ξ̃ + ∆)] = E
P̂N

[xξ̃] + sup
∥∆∥p≤ε

x∆ = 1
N

∑
ξ∈Ξ̂

xξ + sup
∥Θ∥p≤1

xΘ · ε

= 1
N

∑
ξ∈Ξ̂

xξ + ∥x∥q · ε

□

Remark 1 The new term ∥x∥q added from the reformulation can be seen as a penalty from
the number of uncertain elements we choose in our solution x. The more uncertain elements
we use to construct our solution, the more penalty we get from this term ∥x∥q. What this
reformulation means is that we want a good trade-off between the evaluation of a solution using
the past data and its uncertainty.

Remark 2 Note that this result can also be shown using the duality theory from the original
problem. It can be seen as a special case of the reformulation using duality theory done in [3].



4 Main algorithm

In the following section, we note J = (A, b, P ) an instance of (p, ε)-WDRO-Pb where A, b
are the constraint coefficients matrix and vector which defines the set of feasible solutions and
P is the empirical distribution, which is the center of the distribution ambiguity set. We also
note I = (A, b, c) an instance of Pb where A, b are the constraint coefficients matrix and
vector which defines the set of feasible solutions and c is the cost coeffients vector.

Theorem 1 shows that (p, ε)-WDRO-Pb can be reformulated into a problem with a deter-
ministic objective function, without any notion of probability distributions.

As x is a binary vector, we can rewrite ∥x∥q = q

√∑
i xq

i = q
√∑

i xi = q
√
|x| where |x| =

∑
i xi.

Suppose that an algorithm A can return a solution of (Pb). We provide a method to solve
its WDRO counterpart using the same algorithm A. Notice that unlike (Pb), the objective
function in (p, ε)-WDRO-Pb is not linear. Solving such a problem can be hard in general cases.
The idea of our method is to linearize the non linear part of the objective function. To do so,
we want to replace f(|x|) = q

√
|x| by tangents gi : k 7→ aik + bi where gi is the tangent of f

at value |x| = i. The idea of using tangents is the fact that it gives a linear function which
dominates f at all the evaluated points. Since we only evaluate f at integer values, instead of
using tangents, we can take any ai ∈ [ q

√
i + 1− q

√
i; q
√

i− q
√

i− 1].
When the objective function is linearized, we are able to solve the linearized problem using

the algorithm A. This procedure is described with Algorithm 1.

Remark 3 In this paper, we will use ai = q
√

i + 1− q
√

i and consider that it can be computed
in polynomial time to avoid technical details. However, in order to have a complete proof, we
must show that we can choose a rational ai ∈ [ q

√
i + 1 − q

√
i; q
√

i − q
√

i− 1] in polynomial time
that keeps the same properties.

Algorithm 1 Algorithm to solve (p, ε)-WDRO-Pb
Require: An algorithm A for Pb returning a feasible solution and an instance J = (A, b, P̂N )

of (p, ε)-WDRO-Pb
Ensure: A feasible solution x of J

if p = 1 then
x← A(A, b, c = 1

N

∑
ξ∈Ξ̂

ξ)

return x if (c · x + ε < 0 or 0 is unfeasible) and the vector 0 otherwise
else

q ← p
p−1

for i from 0 to n do
ai ← q

√
i + 1− q

√
i

x(i) ← A(A, b, c = 1
N

∑
ξ∈Ξ̂

ξ + εai · 1)

return the x(i) that minimizes the cost

Lemma 3 Assuming A is a polynomial algorithm, the complexity of Algorithm 1 is also poly-
nomial.

Lemma 4 Let bi = q
√

i − ai · i. Let J = (A, b, P̂N ) be an instance of (p, ε)-WDRO-Pb. We
assume p ̸= 1, let x∗ be an optimal solution of J with value ω∗ and, for i ∈ J0; nK, let x∗

i be
an optimal solution of Ii, the instance of (Pb) defined as Ii = (A, b, c = 1

N

∑
ξ∈Ξ̂

ξ + ε · ai · 1)

and let ω∗
i be its optimal value. Then min

i∈J0;nK
ω∗

i + ε · bi = ω∗.



The idea of the proof of Lemma 4 is the fact that if xi an optimal solution of Ii then either
|xi| = i or |xi| ≠ i but the objective value of |x|xi|| is lower than the value of xi. This means
that any solutions xi such that |xi| ≠ i can not be an optimal solution of J .

Lemma 3 describes the time complexity of Algorithm 1 and Lemma 4 proves the correctness
of Algorithm 1. Using both Lemmas 3 and 4, we can show that (p, ε)-WDRO-Pb can be solved
in polynomial time if A is a polynomial algorithm solving (Pb).

Theorem 2 If Pb is α-approximable in polynomial time, then, for any p ∈ R∗
+ ∪ {+∞} and

ε > 0, (p, ε)-WDRO-Pb is α-approximable in polynomial time.

Remark 4 When our framework is applied to the shortest path problem, we obtain a polyno-
mial distributionally robust shortest path problem whereas most of the robust versions of the
shortest path problem are known to be NP-hard. This result is similar to the one in [1] with a
different framework.

5 Conclusion and perspectives
In this paper, we describe distributionally robust optimization paradigm to take account of

uncertainties, in particular, the data-driven Wasserstein distributionally robust optimization
framework. Knowing a black box algorithm to solve a 0-1 discrete optimization problem, we
propose an algorithm to solve its distributionally robust counterpart. Complexity results re-
lated to polynomiality of the original problem are still available for the new problem. We are
aware that the purpose of our algorithm is only to give a theoretical complexity result on the
WDRO problems. From a practical point of view, this algorithm should obviously be adapted
to each combinatorial optimization problem on a case-by-case basis. For example, adapting
the Dijkstra algorithm should provide a better time complexity than our Algorithm 1 for the
WDRO shortest path problem.

An interesting perspective is to assume that the constraint coefficients are subject to un-
certainty. In this case, we have to describe another framework that can take account of the
modification of the feasible solution set by the uncertain coefficients. For example, one para-
digm that can be used is the distributionally robust chance constrained programs studied in
[2, 5, 7].
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