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Introduction. In this work, we consider the Delay Constrained Unsplittable Shor-
test Path Routing (D-USPR) problem which arises in the field of traffic engineering for IP
networks. This problem consists, given a directed graph and a set of commodities, to compute
a set of routing paths and the associated administrative weights such that each commodity
is routed along the unique shortest path between its origin and its destination, according to
these weights. More formally, we consider given a bidirected graph G = (V , A) that represents
an IP network topology. Every node v ∈ V corresponds to a router while an arc a = uv ∈ A
represents a logical link between router nodes u and v. Every arc uv is associated a capacity
(bandwidth) denoted by cuv ⩾ 0 and a latency value denoted δuv ⩾ 0. We let K denote a set of
commodities (traffic demands) to be routed over the graph G. Every commodity k is defined
by a pair (sk, tk) with sk, tk being the origin and destination of k, respectively, along with the
traffic volume Dk ⩾ 0 to be routed from st to tk and a a maximum delay value ∆k ⩾ 0. The
D-USPR problem is to find a set of weights to assign to the arcs of G and a set of routing
paths induced by those weights such that (i) there is a unique shortest path satisfying the
delay constraints for each commodity according to the identified weights and (ii) the network
congestion is minimum.

We propose two exact algorithms to solve the problem. First, we present a compact MILP
formulation for the problem, extending the work in [3, 2] along with some valid inequalities to
strengthen its linear relaxation. Then, we further propose a dynamic programming algorithm
based on a tree decomposition of the graph. To the best of our knowledge, this is the first exact
combinatorial algorithm for the problem. Finally, we outline the main steps of an hybrid exact
algorithm combining both approaches.

Basic MILP formulation and valid inequalities. Let xk
a be a binary variable that takes

the value 1 if commodity k is routed along a path using arc a and 0 otherwise. We define the
binary variables ut

a that takes the value 1 if a belongs to a shortest path towards destination
t and 0 otherwise. We further let wuv denote the weight assigned to the arc uv and rv

u be the
potential of node u, that is the distance between node u and node v. The D-USPR problem is
then equivalent to the following MILP formulation :
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Trivial and integrity constraints are omitted due to space limit. The objective (1) is to
minimize the load of the most loaded link, denoted L. Inequalities (2) ensure that a unique
path is associated to each commodity k and (3) express the load over an arc a. Inequalities
(4) are the delay constraints over the routing paths while (5) and (6)-(7) are anti-arborescence
and linking constraints, respectively. In particular, inequalities (5) ensure that there is at most
one path traversing any node v towards a given destination t ∈ T , which is necessarily implied
by Bellman property. Constraints (8) and (9) guarantee that the weight of any arc used by a
shortest path towards a destination t corresponds to the difference of potentials between the
end nodes of this arc and larger otherwise. We further strengthen the formulation by adding
two families of valid inequalities namely subpath consistency and node precedence constraints.

The basic formulation (2)-(9) was implemented in Python using Cplex 12.8 with the default
settings and NetworkX graph library. We have tested our formulation on several instances
derived from SNDlib (sndlib.zib.de) topologies of variying size and density along with the
following features. First by (i) solving the basic formulation, second by introducing (ii) the
subpath consistency inequalities, (iii) the node-precedence inequalities and (iv) both families
of valid inequalities, to the basic formulation.

A dynamic programming algorithm. We design a dynamic programming (DP) algorithm
based on tree decomposition for solving the D-USPR problem. Observe that the problem is
trivial in the case where the input graph is a tree since there can only be one path to route any
demand. Unfortunately, it is not possible to generalize this positive result to graphs of bounded
treewidth since the problem is NP-complete even on bidirected rings [1]. However, we show
that there exists a polynomial-time algorithm for graphs of bounded treewidth with bounded
number of demands and delays. This algorithm has not only a theoretical interest but is also
expected to boost the effectiveness of a branch-and-cut (B&B) algorithm for solving the above
formulation (especially on “tree-like” networks) as described in the following two steps :

1. Run the DP algorithm until an optimal solution is obtained or a certain stop criteria is
reached (e.g time limit).

2. If no optimal solution was found by the DP then populate a pool of partial routing paths
that can be used to generate dynamically cuts throughout a B&B algorithm applied over
the MILP formulation.

Conclusion and future directions. Although the obtained results are promising there is
still room for improvements. First, we expect that solving the formulation using a branch-and-
cut algorithm will substantially improve the performance of the MILP. Second, we also plan
to implement and validate the performance of the proposed hybrid DP/B&B approach.
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