
A New Model for the Multiple Constant Multiplication Problem

Rémi Garcia1, Anastasia Volkova1, Alexandre Goldsztejn2

1 Univ. Nantes, CNRS, LS2N, Nantes, France
2 CNRS, Univ. Nantes, LS2N, Nantes, France

firstname.lastname@univ-nantes.fr

Keywords : multiple constant multiplication, mixed-integer linear programming

1 Introduction
The multiplications by several integer constants is a frequent operation in many algorithms
implemented in embedded systems, e. g., the evaluation of digital filters. Instead of using costly
generic multipliers, circuit designers usually lean towards multiplierless implementations, where
a series of bit shifts and additions/subtractions, which come at lesser cost, is used instead. For
example, rewriting 7x as 23x − x, a generic multiplier is replaced by just one adder and one
bit-shift, whose cost is negligible as these are hardwired during circuit design. Moreover, when
multiplying by several constants, intermediate results can be shared, e. g. for multiplication by
both 7 and 23, the latter can be computed as 23x = 7x+ 24x. Figure 1 presents the so-called
adder graph describing the multiplierless solution.

Aiming at reducing the hardware cost, the problem of finding a multiplierless implementa-
tion with the least number of adders, for a set of given target constants, is known as a Multiple
Constant Multiplication (MCM) problem and conjectured to be NP-Hard [11]. Another im-
portant metric, used in practice, is the delay, which is directly correlated to the adder depth
(AD), i. e. the maximum number of cascaded adders (e. g. adder depth is two in Figure 1).
When the adder depth is limited a priori, the problem is called a Bounded MCM (BMCM).

The current state-of-the-art optimal approach for the MCM problem [9] is based on ILP.
However, it is stated not as an optimization but a satisfaction problem, deciding whether a
set of target constants can be realized using exactly NA adders. The BMCM problem is also
optimally solved based on an ILP model from [8], this time allowing to directly minimize the
number of adders. The bottleneck of this approach are heavy precomputations which, with
the increasing coefficient word length, lead to impractically big models.

With this work we first propose a new ILP model for MCM as a minimization problem,
allowing for better versatility. We also demonstrate a limitation of the state-of-the-art MCM
model [9], which misses optimal solutions in certain cases, and correct it within our model. We
further extend our model to solve the BMCM problem by adding necessary constraints into
the ILP model, avoiding any heavy precomputations and neutralizing the main performance
bottleneck. Moreover, we combine the minimization of both adder depth and the adder count
into one objective function, offering a new complete MCMmin ADmodel. Finally, we propose
new symmetry breaking constraints, which significantly improve the resolution process.

x

← 3
← 4

(7x)

−

23x 7x
FIG. 1: Optimal adder graph for 7x and 23x

ca,l

←− sa,l

ca,r

←− sa,r

φa,rφa,l

ca

FIG. 2: Adder model from [9]



x

← 3 ← 5

(7x)

−

(31x)

−

← −1 ← −1

7x 19x 31x

FIG. 3: Optimal adder graph for
computing 7x, 19x and 31x

x

← 3

(7x)

−

← 3

(49x)

−

← 1

49x 51x

x

← 1

(3x)

← 4 ← 4

49x 51x

FIG. 4: Optimal adder graphs with different AD

2 State of the art
First formulations of MCM date back to 1986 [3] and, since then, the problem has been
well studied and can be tackled using greedy algorithms [2], heuristics, bounds [6], optimal
approaches [1, 7, 9, 11], etc. The current state-of-the-art optimal method [9] is based on
an ILP model for the adder graphs describing MCM. The adder graphs have the following
properties: they are directed acyclic graphs (DAG), for which each node, except for the input
node, corresponds to an adder. Nodes have an in-degree of two and each edge weight represents
a bit shift, which is noted along an arrow in figures. No weight or zero means the absence of a
bit shift. Each adder is annotated by a constant called fundamental, which corresponds to the
constant by which the input is multiplied. Without any loss of generality [4], we use only odd
fundamentals. Additionally, any MCM instance can be transformed into an equivalent MCM
problem with only unique odd positive target constants.

The ILP model [9] solves a decision problem and minimizing the number of adders requires
an outside loop on the number of adders, starting with a known lower bound [6] and continuing
while no feasible solution is found. The model relies on the linearization of the relation between
an adder and its input in the adder graph (see Figure 2). Yet, we discovered that the model
does not permit negative shifts, which are necessary for reaching optimal solutions for some
target constants sets as [7, 19, 31]. In Figure 3, we show the optimal adder graph which is not
obtained by the existing ILP model. Not allowing negative shifts leads to adder graphs with
at least four adders, which are therefore not optimal.

If the adder depth is a priori bounded, all possible combinations of adders can be generated,
knowing that the integer constants and shifts are bounded [4]. This idea is the basis of a second
ILP model [8], which solves the BMCM problem. This model requires heavy precomputations
that enumerate all possible adders for each adder stage. Hence, the size of the model directly
depends on the word length of the coefficients and on the maximum considered AD. This leads
to an important performance bottleneck, limiting the applicability of the model only to low
ADs (typically 3 or 4). Usually, it is desirable to obtain an adder graph with the smallest AD
possible as a second objective. Solving BMCM with multiple AD values can theoretically solve
this problem, which we will refer to as MCMmin AD, but this approach fails in practice as the
existing model is limited to low ADs.

3 Modeling for MCM and BMCM
We though of two straightforward approaches to address the issue of the existing ILP model
to solve the MCM problem [9]. However, both have limitations, either because of potential
numerical instabilities, or because of an important search space expansion. We solve the MCM
problem by proposing a new model, better adapted to handle the negative shifts (Section 3.1).
The adder depth information is included in this model in Section 3.2, which allows solving both
BMCM and MCMmin AD homogeneously. Finally, symmetry breaking constraints are included
in the model in Section 3.3.



Constants/Variables and their meaning
NA ∈ N: number of adders;
NO ∈ N: number of outputs;
C ∈ NNO : target constants;
Smin, Smax ∈ Z: minimum and maximum shift;
w ∈ N: word length.
ca ∈ [[0, 2w]], ∀a ∈ [[0, NA]]: constant obtained in adder a with c0 fixed to the value 1;
cnsh
a ∈ [[0, 2w+1]], ∀a ∈ [[1, NA]]: constant obtained in adder a before the negative shift;
codd
a ∈ N, ∀a ∈ [[1, NA]]: variable used to ensure that ca is odd;
ca,i ∈ [[0, 2w]], ∀a ∈ [[1, NA]], i ∈ {l, r}: constant of adder from input i before adder a;
csh
a,l ∈ [[0, 2w+1]], ∀a ∈ [[1, NA]]: constant of adder from left input before adder a and after
the left shift; for simplification csh

a,r is an alias of ca,r;
csh,sg
a,i ∈ [[−2w+1, 2w+1]], ∀a ∈ [[1, NA]], i ∈ {l, r}: signed constant of adder from input i
before adder a and after the shift;
Φa,i ∈ {0, 1}, ∀a ∈ [[1, NA]], i ∈ {l, r}: sign of i input of adder a. 0 for + and 1 for −;
ca,i,k ∈ {0, 1}, ∀a ∈ [[1, NA]], i ∈ {l, r}, k ∈ [[0, NA − 1]]: 1 if input i of adder a is adder k;
σa,s ∈ {0, 1}, ∀a ∈ [[1, NA]], s ∈ [[0, Smax]]: 1 if left shift before adder a is equal to s;
Ψa,s ∈ {0, 1}, ∀a ∈ [[1, NA]], s ∈ [[Smin, 0]]: 1 if negative shift of adder a is equal to s;
oa,j ∈ {0, 1}, ∀a ∈ [[1, NA]], j ∈ [[1, NO]]: 1 if adder a is equal to the j-th target constant.

TAB. 1: Constants (top) and variables (bottom) used for the ILP formulation

3.1 ILP Model for MCM
In adder graphs that only involve odd fundamentals, adders are linked one with another by
the nonlinear equation

ca = 2−s1
(
(−1)φa,l 2s2ca,l + (−1)φa,r ca,r

)
, (1)

where ca is the fundamental computed by adder a, the ca,i are its non-shifted and non-signed
inputs and, signs and shifts are handled by φa,i, s1 and s2. To linearize that equation, we have
to include many binary variables and indicator or big M constraints. For conciseness, in the
following we will only present the indicator constraints. Necessary variables and their meaning
are presented in Table 1 and constraints are as follows:

cnsh
a = csh,sg

a,l + csh,sg
a,r ∀a ∈ [[1, NA]] (C1)

cnsh
a = 2−sca if Ψa,s = 1 ∀a ∈ [[1, NA]], s ∈ [[Smin, 0]] (C2)

0∑
s=Smin

Ψa,s = 1 ∀a ∈ [[1, NA]] (C3)

σa,0 =
−1∑

s=Smin

Ψa,s ∀a ∈ [[1, NA]] (C4)

ca = 2codd
a + 1 ∀a ∈ [[1, NA]] (C5)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1, NA]], i ∈ {l, r} ,∀k ∈ [[0, a− 1]] (C6)
a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1, NA]], i ∈ {l, r} (C7)

csh
a,l = 2sca,l if σa,s = 1 ∀a ∈ [[1, NA]], s ∈ [[0, Smax]] (C8)
Smax∑
s=0

σa,s = 1 ∀a ∈ [[1, NA]] (C9)

csh,sg
a,i = −csh

a,i if Φa,i = 1 ∀a ∈ [[1, NA]], i ∈ {l, r} (C10)



csh,sg
a,i = csh

a,i if Φa,i = 0 ∀a ∈ [[1, NA]], i ∈ {l, r} (C11)
ca = Cj if oa,j = 1 ∀a ∈ [[0, NA]], j ∈ [[1, NO]] (C12)
NA∑
a=0

oa,j = 1 ∀j ∈ [[1, NO]] (C13)

Constraint (C1) states that the value of an adder before a potential negative shift is equal to
the sum of its shifted and signed inputs. Constraints (C2), (C3) and (C5) apply the negative
shift to variables ca and ensure that the computed fundamental is odd. It can be noticed that
a potential negative shift after cnsh

a only makes sense if the sum of the inputs is even, which
can only happen if no left shift is applied to the left input: constraint (C4) specifically states
that in order to speed up the solving. The link between an adder and its inputs is enforced by
constraints (C6) and (C7). Constraints (C8) and (C9) permit to apply the shifts to the inputs
of an adder while constraints (C10), (C11) apply the sign. Finally, every target constant is
computed once and only once thanks to constraints (C12) and (C13). These constraints define
a decision problem that can be solved with no objective function.

Thanks to good heuristics that give a tight upper bound on the optimal number of adders,
it is now possible, and efficient, to tackle MCM as a minimization problem, instead of relying
on an outside loop on the number of adders and a satisfaction model. By fixing NA to an
upper bound, obtained using a heuristic solution [10], we are able to minimize the number of
effectively used adders. A binary variable, ua ∈ {0, 1}, ∀a ∈ [[1, NA]], permits to deactivate an
adder if not used: ca = 1 if ua = 0. Then, adding to the model the objective function min

∑
ua

permits to solve the MCM problem using the full potential of MILP solvers and not only their
satisfiability part.

3.2 Support of Limited Adder Depth: BMCM and MCMmin AD

In order to propagate the adder depth, we introduce two sets of integer variables, ada and
ada,i, i ∈ l, r, representing the AD of the adder a and of its left and right inputs, respectively.
Naturally, ad0 = 0 and the AD propagation is handled with the following constraints

ada = max (ada,l + 1, ada,r + 1) ∀a ∈ [[1, NA]], (2)
ada,i = adk if ca,i,k = 1 ∀a ∈ [[1, NA]], i ∈ {l, r} , ∀k ∈ [[0, a− 1]]. (3)

Note that the max in (2) can be linearized adding a set of binary variables to the model.
Then, constraint ad ≥ ada permits to bound the AD by a user-given constant, ad, tackling

the BMCM problem.
Our BMCM model can actually be extended towards MCMmin ADin order to optimize for

both adder count and adder depth. By introducing a variable admax with the constraints
admax ≥ ada, so that admax is an upper bound on the AD. Then, the objective function
min

∑
(NAua) + admax is a weighted sum that enforces a lexicographic optimization with the

number of adders as first objective and the AD as second. Indeed, reducing the number of
adders is unconditionally stronger than increasing the AD because NA ≥ admax.

Solving the MCMmin AD permits to select from the set of solutions with minimal number of
adders those which yield the smallest delay in a hardware implementation. For example, for
target constants {49, 51} our new MCMmin AD yields an optimal solution with an AD = 2 and
NA = 3, with the intermediate fundamental 3, instead of AD = 3 for other solutions with
NA = 3 but using an intermediate fundamental such as 7 (see Figure 4).

In order to speed up the computations, Gustafsonn [6] proposed lower bounds on the AD for
target constants, which we use to guide the solver. This leads to the following new constraints:

ada ≥ oa,j × adj ∀a ∈ [[1, NA]], j ∈ [[1, NO]], (4)

where adj is the lower bound on the adder depth of the output j.



MCM BMCM3 MCMmin AD

Benchmark WL #coeff. T NA AD T NA AD T NA AD

GAUSSIAN_3 8 3 < 1 4 2 < 1 4 2 < 1 4 2
GAUSSIAN_5 11 3 3 5 4 5 6 3 16 5 4
HIGHPASS_5 7 4 < 1 4 2 < 1 4 2 < 1 4 2
HIGHPASS_9 7 5 < 1 5 2 < 1 5 2 < 1 5 2
HIGHPASS_15 9 12 < 1 12 2 < 1 12 2 < 1 12 2
LAPLACIAN_3 7 3 < 1 3 3 < 1 3 3 < 1 3 3
LOWPASS_5 7 5 2 6 5 3 6 3 3 6 3
LOWPASS_9 9 12 47 12 6 2 12 3 43 12 3
LOWPASS_15 11 25 TO − − TO − − TO − −
UNSHARP_3-1 7 3 < 1 4 2 < 1 4 2 < 1 4 2
UNSHARP_3-2 11 3 3 5 4 2 5 3 2 5 3

TAB. 2: Results and comparison of the proposed MCM models. WL corresponds to the
coefficients maximum word length, #coeff. is the number of unique coefficients. T is the solving
time in seconds, NA and AD stand for the number of adders and the adder depth, respectively.
3.3 Symmetry Breaking Constraints
The model contains some symmetries that can be broken in order to reduce the search space.
One can note that, if two neighboring adders, a and a+ 1 do not directly interact, then their
order in the solution has no impact. If they do interact, their AD has to differ. Ordering
the adders first by AD, and secondly by value, inside a same AD group, enforces an order
on the adders. Finding additional constraints that permit to enforce that order is a classic
way to remove symmetric solutions, keeping at least one of them.Breaking these symmetry
means finding additional constraints, called symmetry breaking constraints, that remove some
symmetric solutions but keep at least one of them.

The first constraint that ensures the right order is straightforward:

ada ≤ ada+1 if ua+1 = 1, ∀a ∈ [[1, NA − 1]]. (5)

To enforce the correct order inside each adder depth group, we ensure that

ca ≤ ca+1 + 2w (ada+1 − ada) if ua+1 = 1, ∀a ∈ [[1, NA − 1]]. (6)

For both above constraints, (5) and (6), the indicator constraint can be dropped if the adder
is known to be used thanks to a known lower bound [6].

More symmetries can be broken as it could be desirable to have the unused adders stored
on the last indices: ua ≤ ua−1, ∀a ∈ [[2, NA]]. This constraint forces adder a − 1 to be used if
adder a is. Thus, used adders are first indices and a few ua can be fixed to 1 as a known lower
bound can be computed [6].

4 Experiments
We implemented our MILP model in julia using the JuMP library and provide an open-source
tool for reproducibility1. All experiments were performed on a Linux laptop with i7-10810U
processor and 32 GB RAM using the solver Gurobi 9.1.1 with a time limit of 30 minutes. We
used a set of benchmarks commonly used with MCM [8] and report in Table 2 the resolution
of the problems MCM, BMCM and MCMmin AD using our model with the symmetry breaking
constraints activated as unreported experiments showed a reduction of solving times.

Except for the instance LOWPASS_15, optimization times are small and the minimization of
the adder depth does not lead to significant time overhead showing the robustness of our model.
Minimizing the adder depth led to a reduction from 6 to 3 when solving LOWPASS_9. Solving
the BMCM problem with our model has permitted a large reduction of the solving time for
the instance LOWPASS_9. It is clear that solving the model without any bound on the AD led
to the exploration of a larger search space since the obtained solution has an AD of 6.

1https://gitlab.univ-nantes.fr/remi-garcia/tool-mcm-roadef2022

https://gitlab.univ-nantes.fr/remi-garcia/tool-mcm-roadef2022


Compared to the existing ILP model [9] that solves the MCM problem without allowing for
negative shifts, hence using a smaller search-space, our approach led to similar solving times
except for the instance LOWPASS_9 for which the existing model found a solution in only 15
seconds. Solving the BMCM problem with the existing model [8] either outperformed our
approach, if we ignore the model generation, taking less than a second where we needed a
few, or took several minutes or hours to solve some instances that we solved in a few seconds.
Overall our approach is more robust and versatile that the state-of-the-art.

5 Conclusion
The MCM is a cornerstone operation of numerous computing applications and its efficiency is
critical for the design of resource-constrained hardware circuits. With this work we introduced
new ILP-based models for the MCM problem with three flavors: classic minimization of total
number of adders, MCM under bounded adder depth, and a combined minimization of the
adder count and depth. These models resolve several issues of the current state-of-the-art and
offer novel features. The benchmarks demonstrate that better results can be obtained with
our complete models, and in a reasonable time, permitting digital circuit designers to cover
a larger design-space while relying on optimality of the results. The impact of the proposed
models goes beyond the standalone MCM, as these are used as basic bricks in an ILP-based
digital filter design [5].

References
[1] Levent Aksoy, Ece Olcay Güneş, and Paulo Flores. Search algorithms for the multiple

constant multiplications problem: Exact and approximate. 34(5):151–162, August 2010.

[2] Erik Backenius and Erik Säll. Two’s Complement Conversion to Minimal Signed Digit
Code, 2005.

[3] Robert Bernstein. Multiplication by integer constants. Software: Practice and Experience,
16(7):641–652, 1986.

[4] Andrew G. Dempster and Malcolm D. Macleod. Constant integer multiplication using
minimum adders. IEE Proceedings - Circuits, Devices and Systems, October 1994.

[5] Rémi Garcia, Anastasia Volkova, Martin Kumm, Alexandre Goldsztejn, and Jonas Kühle.
Hardware-aware Design of Multiplierless Second-Order IIR Filters with Minimum Adders.
working paper or preprint, August 2021.

[6] Oscar Gustafsson. Lower Bounds for Constant Multiplication Problems. IEEE Transac-
tions on Circuits and Systems II: Express Briefs, 54(11):974–978, November 2007.

[7] Oscar Gustafsson. Towards optimal multiple constant multiplication: A hypergraph ap-
proach. In 2008 42nd Asilomar Conference on Signals, Systems and Computers, pages
1805–1809, October 2008.

[8] Martin Kumm. Multiple Constant Multiplication Optimizations for Field Programmable
Gate Arrays. Springer Fachmedien Wiesbaden, Wiesbaden, 2016.

[9] Martin Kumm. Optimal Constant Multiplication Using Integer Linear Programming.
IEEE Transactions on Circuits and Systems II: Express Briefs, 65(5):567–571, 2018.

[10] Martin Kumm, Peter Zipf, Mathias Faust, and Chip-Hong Chang. Pipelined adder graph
optimization for high speed multiple constant multiplication. In IEEE ISCAS, May 2012.

[11] Jason Thong and Nicola Nicolici. An Optimal and Practical Approach to Single Constant
Multiplication. IEEE TCAD, 30(9):1373–1386, 2011.


	Introduction
	State of the art
	Modeling for MCM and BMCM
	ILP Model for MCM
	Support of Limited Adder Depth: BMCM and MCMminAD
	Symmetry Breaking Constraints

	Experiments
	Conclusion

