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1 Introduction

This paper deals with the modeling of complex stochastic processes in the long-term mul-
tistage energy planning problem [1] which is characterized by the presence of many sources of
uncertainty, both in the objective function and in the constraints. Starting from basic projec-
tions consisting of ranges for the future values of parameters such as demands, energy costs
and technology efficiencies, we model the temporal correlation of these uncertain parameters
through auto-regressive models. Due to the distinct role played by these parameters in the mo-
del, some of them require discretization via Markov chains. The resulting formulation is then
solved with an advanced SDDP algorithm available in the literature that handles finite-state
Markov chains. Our numerical experiments, performed on the Swiss energy system, show a
very desirable adaptation strategy of investment decisions to uncertainty scenarios, a behavior
that is not observed when the temporal correlation is ignored. Moreover, the solutions lead
to better out-of-sample cost performances than the non-correlated ones which usually yield
overcapacities to protect against high, but unlikely, parameter variations over time.

2 Multistage Stochastic Linear Programming

The problems of real world energy systems are usually of a dynamic nature, where un-
certain parameters ξt are revealed sequentially and decisions must be adjusted to the recent
realizations. It can be seen as a two-stage model sequence

min
(y1,z0)∈X1(y0,ξ1)

f1(y1, z0, ξ1) + Eξ2|ξ1 [Q2(y1, ξ2)] (1)

where {yt, zt}Tt=1 describe a policy (a solution to the MSLP) and the recourse term Q2(y1, ξ2)
similarly depends on the decisions to be made at later stages with

Qt(yt−1, ξt) = min
(yt,zt−1)∈Xt(yt−1,ξt)

ft(yt, zt−1, ξt) + Eξt+1|ξt
[Qt+1(yt, ξt+1)] (2)

for t = 2, ..., T , where the term QT+1(yT , ξT+1) ≡ 0 at last-stage recourse term QT (yT−1, ξT ).
To ensure that the model is well defined, we impose relatively complete recourse for any
policy yt, zt ∀t = 2, ..., T . Functions Qt(yt−1, ξt) are referred as future cost functions and Qt =
Eξt+1|ξt

[Qt+1(yt, ξt+1)] as expected future cost functions.



3 SDDP, Autoregressive models and Markov Chains
We solve (1) using the Stochastic Dual Dynamic Programming (SDDP) algorithm in which

the stochastic process is stage-wise independent. Despite its advantages, an important limita-
tion of the SDDP is related to the modeling of the dynamics of the state variables. The most
common way to preserve dependence within the SDDP is to assume that the stochastic process
is modeled as an autoregressive process of order 1 (AR(1)). An AR(1) is incorporated into the
SDDP model by defining the stochastic process as a state variable, the noise or innovation ξt
is considered stage-wise independent and the recursive equation is added to the model. Note
that if the new state variable multiplies any other decision variable, bilinear terms originate
that destroy the convexity of the future cost function. Therefore, to maintain the mathematical
properties that make the method efficient, only the processes (in our case the demands) that
are on the right-hand side of the constraints can be expressed as an affine function of the errors.

However, there is another way to preserve the dependence in the SDDP without destroying
the convexity of the problem, and that is when the stochastic process is modeled through
a finite-state Markov chain. A stochastic process {ξt} is called Markovian if the conditional
distribution of ξt given ξ[t−1] is the same as that of ξt given ξt−1 for t = 1, ...T . When a data
process is assumed to be Markovian, a future cost function must be enumerated for each value
taken by the state variable, which increases the dimensionality of the problem. It is the main
computational disadvantage of this approach. Also, if the process is multi-dimensional, the
number of Markov states needed to obtain a good enough solution becomes prohibitive. In
this paper, we constructed a Markov chain (homogeneous case) with N-state variables can be
derived from an autoregressive process of order 1 to model uncertainty on resource costs. The
Markov chain is then introduced in the SDDP formulation.

4 Numerical reuslts
The problem was modeled under three different approaches : the deterministic one, where

all input data of the stochastic processes are fixed at nominal value ; the simple SDDP model,
where all processes of the random variable are considered stage-wise independent, and finally
the MC-SDDPmodel which combines the SDDP with a Markov chain and introduces additional
state variables and constraints into the formulation to model the right side uncertainty by
means of a linear time series AR(1).

In our numerical results, the MC-SDDP model proves that considering time dependence can
provide benefits in terms of out-of-sample performance. Also the optimal policies of the MC-
SDDP protect the system better from extreme events. Therefore the use of better autoregressive
models can improve the quality of the results through stochastic optimization. On the other
hand, the SDDP model helps to understand the importance of establishing the assumptions
and modeling the random variable, since it can leave undesirable solutions. Although the total
cost of the two models have a very similar distribution, the non-adaptability of the policy given
by the standard SDDP may generate a high risk of overcapacity if future demand is low.
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