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1 Introduction
An increasing number of enterprises in the retailing industry are now advancing to omni-

channel configurations and adopting modern innovations to integrate their stores to provide
clients with a comprehensive buying experience. In this context, we propose and study an opti-
mization problem for an omnichannel model based on a price-setting single-period newsvendor
model. This model decides the selling price and order quantity for each channel. Given the
total market stochastic demand, each channel’s demand is determined through an attractive
model (a function of all the selling prices across channels).

The proposed model is applicable to seasonal products as well as products with short life
cycles. It is also applicable to perishable products when units carried on the shelf are all of
the same age. We focus on the relationship between expected profit and the service level for a
price-setting omnichannel model. This relationship is important because the cycle service level
(CSL) is frequently used by inventory managers as a metric to measure business quality and
set the inventory policy, rather than the shortage cost to represent the economic consequence
of a stock out.

The optimization problem is to maximize the total expected profit. The inequality constraints
are set initially on the CSL - the probability that the demand does not exceed the order quan-
tity. Thus, it is a chance-constrained problem. This problem is solvable since the decision
variables and randomness can be decoupled. In addition, the constraints can be transfor-
med into deterministic constraints using probability density functions. Therefore, nonlinear
programming approaches can be used to solve the problem. However, given the inequality
constraints, there are numerous difficulties. Most of which are related to structure, stability of
transforming chance constraints into deterministic constraints, joint concavity of the objective
function, convergence of numerical methods to determine the solution. In short, finding its op-
timal solution via chance-constrained programming or some well-known algorithms for solving
deterministic non-linear constraints optimization problem is challenging and out of scope for
this paper.

In this paper, we study a relaxed problem with equality constraints on CSL. It is still a non-
linear chance-constrained problem. It is also complicated to find the optimal solution. Despite
its challenges, we prove that the problem is mathematically well-behaved. Precisely, we can
reduce the number of decision variables, investigate an equivalent unconstrained problem, and
verify the joint concavity of its objective function. Moreover, there exists a unique solution
to the first-order conditions. This solution corresponds to the maximization equality chance-
constrained problem. As a consequence, a simple numerical method can be applied to find this
point.

The rest of the paper is structured as follows. The next section represents the problem
formulation. The third section investigates the optimization problem with non-linear equality
constraints on CSL. The last section reports and discusses the results.



2 Optimization problem
Let us consider the following problem : a retailer buys a type of product from suppliers and

distributes them to consumers through n channels I = {1, 2, . . . , n}. Each channel’s demand
depends on the total market demand and all the other channels demand via an attraction
function of prices. Its corresponding profit is then determined via a price-dependent newsvendor
model, with the constraint that the related order quantity satisfies a constraint on CSL. Thus,
the retailing (or total) profit is the sum of all the channels’ profit. In this paper, our goal is to
find the optimal prices and order sizes to maximize the expected total profit.

Q = (Q1, Q2, . . . , Qn) is the vector of order sizes, c = (c1, c2, . . . , cn) is the vector of purchase
costs per unit, s = (s1, s2, . . . , sn) is the vector of salvage values for unsold units left at the
end of the period, ci ≥ si ≥ 0, r = (r1, r2, . . . , rn) is the vector of selling prices, D =
(D1, D2, . . . , Dn) is the vector of demand, ξ is the total market demand, characterized by its
PDF fξ(x) and CDF Fξ(x). gi(ri) is the attraction function of customers to channel i,

Di(r) = ξ
gi(ri)

g0 +
∑n
k=1 gk(rk)

. (1)

This model is similar to the Luce selection model (Luce 1959). For the motivation of using
attractive function to modelize omnichannel demand, we refer it to [4]. Here, more general
than the omnichannel demand suggested by [4], we consider that the total market demand, ξ, is
stochastic with known distribution. In our model, gi(ri) can be understood as a positive measure
of the attractiveness of channel i, and the expected demand for each channel is proportional to
the channel’s attractiveness. Furthermore, the attractiveness of the no-purchase option might
be interpreted as g0. In literature, there are some frequently used attraction models : linear
attraction model : gi(ri) = ai − biri, with ai > 0, bi > 0,min ai − biri > 0 ; multinomial logit
(MNL) model : gi(ri) = exp(ai−biri) with ai > 0, bi > 0 ; multiplicative competitive interaction
(MCI) model : gi(ri) = air

−bi
i with ai > 0, bi > 1.

Let Gi(r) = gi(ri)
g0+
∑

k∈I gk(rk) . Thus, it represents the proportion of the total demand sharing
in channel i,

Di(r) = ξGi(r). (2)
In our paper, we employ the newsvendor model to determine the profit for each selling

channel ([5]). At the end of the selling season, the actual profit for the retailer from channel i
is

Πi (Di, Qi, ri) = ri min(Di, Qi) + si(Qi −Di)+ − ciQi. (3)
The retailer wants to optimize his profit. However, the retailer is unable to determine the

actual end of selling period profit because the demand was not realized at the start of the
selling season. As a result, the classical method to solve the optimization problem is to assume
a risk-averse retailer who makes the best pricing decision at the start of the sales season in
order to maximize overall expected profit.

The expected profit for channel i ∈ I,

E[Πi (Di, Qi, ri)] = E[Πi (ξGi(r), Qi, ri)] := Πi (Qi, r) , (4)

is a function of corresponding channel order quantity and all the retailing prices. The explicit
formula is given in the Proposition 1.

Proposition 1. The expected profit for channel i ∈ I is as follows

Πi (Qi, r) = (ri − si)Gi(r)E[ξ]− (ci − si)Qi

− (ri − si)Gi(r)
∫ ∞

Qi
Gi(r)

(
x− Qi

Gi(r)

)
fξ(x)dx. (5)

The total expected profit is given as follows

Π(Q, r) =
∑
i∈I

Πi(Qi, r). (6)



Here, Π(Q, r) is concave in each ri (Qi), given the values of all rj , j 6= i and Q (Qj , j 6= i
and r). However, it is not available to verify if Π(Q, r) is jointly concave on all its variables
(all (Qi)i∈I and (ri)i∈I). Thus, the (unconstrained) problem of maximizing Π(Q, r) includes
difficulties (algorithmic, computational approaches) on finding global solutions.

In practice, the retailers not only want to maximize their profit, but they also ask for a
high level of the business quality. The problem thus become maximizing Π(Q, r), under some
managerial requirements. In this paper, the CSL measure is considered since it is frequently
used by retailers to evaluate the quality of their selling process. Recall that the cycle service level
related to channel i ∈ I is the probability that the demand does not exceed the order quantity
P(Di ≤ Qi). Let CSLmi ∈ [0, 1] be the minimum service level related to channel i specified by
the retailer. Thus, the inequality constraint on CSL for channel i is P(Di ≤ Qi) ≥ CSLmi .

Therefore, the optimization problem with inequality constraints is follows

max
Q,r

Π(Q, r)

s.t. P(Di ≤ Qi) ≥ CSLmi ,∀i ∈ I,
r ≥ c,

Q ≥ 0.

(P)

Problem (P) is a chance-constrained problem. In 1959, Charnes and Cooper ([3]) presented
chance-constrained programming as a method for solving optimization problems in the face of
uncertainty. They handled the problem by proposing a methodology for ensuring that a model’s
decision resulted in a certain probability of constraint compliance. The method is reviewed and
developed to increase efficiency (see Abdel, 2020 [2]). Problem (P) is solvable since the decision
variables and randomness can be decoupled. However, there are numerous difficulties. Most of
which are related to structure, stability of transforming chance constraints into deterministic
constraints, joint concavity of the objective function, convergence of numerical methods to
determine the maximal solution.

Problem (P) can be interpreted as a non-linear optimization problem under inequality
constraints since its constraints on CSL can be transformed into deterministic constraints
using probability density function. Precisely, let hi(Qi, r) := Fξ(Qi/Gi(r)) − CSLmi , and
h(Q, r) := (h1(Q1, r), h2(Q2, r), . . . , hn(Qn, r)). Then, the inequality constraints on CSL can
be rewritten as h(Q, r) ≥ 0. Indeed, there are some methods for solving this type of problem.
Interior Point or Sequential Quadratic Programming algorithm can handle nonlinear equality
and inequality constraints very tightly and give us a certificate of local optimality. However,
they require to provide a reasonably good initial guess, the objective function and constraints
should not include any discontinuity, and they only converge to local optima.

In short, problem (P) is complicated to solve. Finding its optimal solution via chance-
constrained programming or some well-known algorithms for solving deterministic non-linear
constraints optimization problem is challenging and out of scope for this paper.

In the next section, despite the complication, we study a relaxed version of problem (P).
We show that, given the equality chance constraints, the objective function only depends on
retailing price variables (no order quantity variables anymore). Moreover, we prove that it is
jointly concave on the vector of prices.

3 On the joint concavity of the relaxed problem

In this section, we consider a relaxed version for the problem (P) by considering the equality
constraints, h(Q, r) = 0. We investigate an equivalent problem where the constraints are
embedded in the objective function. We show that under a set of conditions, the resulting
objective function is jointly concave in prices. Thus, there exists a unique solution to the first
order condition and it is the optimal solution to the relaxed problem. This solution is a local
candidate for the initial problem (P).



Remind that the decision variables and the randomness can be decoupled and the constraints
can be relaxed into deterministic constraints using probability distribution functions. Moreover,
based on the equality constraint, the decision variables can be reduced from (Q, r) to r. Indeed,
from h(Q, r) = 0, it follows that for all i ∈ I,

Qi = Gi(r)F−1
ξ (CSLmi ) . (7)

The following proposition represents the objective function for the relaxed problem as a
function of price variables (ri)i∈I (no order quantity variables).

Proposition 2. Given the equality constraints (7), the relaxed problem’s objective function (6)
is represented as follows

Π̂(r) =
∑
i∈I

{
Gi(r)

[
(ri − ci)F−1

ξ (CSLmi )− (ri − si)CSLiF−1
ξ (CSLmi )

+ (ri − si)
∫ F−1

ξ
(CSLmi )

−∞
xfξ(x)dx

]}
. (8)

Let Ω = [c1,∞)× [c2,∞)× · · ·× [cn,∞) be the feasible domain for r, our problem is to find
the maximum of Π̂(r) given in (8),

max
r∈Ω

Π̂(r). (Q)

It is challenging to decide the concavity of the objective function of problem (Q) since it is
not possible to check if its associated Hessian matrix is negative semi-definite at every point in
Ω. Despite the difficulties, we claim that the function Π̂(r) given in (8) is jointly concave via
a novel approach, given a set of assumptions as follows.

Assumptions
A1. gi(ri) is strictly decreasing in ri.
A2. E[ξ] <∞, limri→∞ gi(ri) = 0, limri→∞ rigi(ri) = 0.

A3. limri→∞ ζi(ri) > −∞, ζi(ri)−
ζ ′i(ri)
ζi(ri)

< 0, where ζi(ri) := g′i(ri)
gi(ri)

,∀i ∈ I.
B1. ξ is a non-negative random variable.
B2. At boundary point of prices c, the total expected profit is non-decreasing in all the

prices, ∇rΠ̂(c) ≥ 0.

Remark 1.
i. Assumption A1 says that the attractiveness of a channel is decreasing in the channel’s

price. This assumption implies that Gi(r) is decreasing in ri and increasing in rj for
i 6= j, which can be interpreted as the expected demand for channel i is decreasing in its
own retailing price and increasing in the retailing prices of other channels.

ii. Assumption A2 guarantees that the expected demand is finite and a channel’s contribution
becomes zero as its price becomes arbitrarily large.

iii. Assumption A3 is rather technical and not very restrictive. For instance, the assumption
is satisfied for linear, MCI, MNL attraction models.

iii. Assumption B1 means that the total market demand is non-negative. If the support of ξ
contains negative part, its truncated version can be used to restrict the domain. However,
it is not indispensable from a technical point of view. Moreover, when B1 is satisfied, Qi

is obviously non-negative for all i ∈ I.
iv. Assumption B2 is not only reasonable in management point of view, but it also secures the

existence of such a point r̂ satisfying ∇rΠ̂(r̂) = 0 (solution to the first order condition).
To our best understanding through experiments, the solution to the first order condition
exists without condition B2., but no analytical proof is available.

To prove the joint concavity, the normal approach by verifying the negative-semi definite
property of the Hessian matrix for arbitrary point in the domain is not possible. We use a
different approach through a relation between the zero-point of a function and its concavity.
The lemma below represents the mentioned property.



Lemma 1. Given a real number a, let ψ : [a,∞) → R be a C2 function of the single variable
u. Suppose that

i. There exists at least one point ū ∈ [a,∞) such that ψ′(ū) = 0,
ii. At any ū that satisfies ψ′(ū) = 0, ψ′′(ū) < 0.

Then, there exists a unique u∗ that satisfies ψ′(u∗) = 0, and u∗ is the argument of the maxima
of ψ(·).

Lemma 2. Given a real value vector a = (a1, a2, . . . , an) ∈ Rn, let Ψ : W1×W2×· · ·×Wn →
R,Wi = [ai,∞) ⊂ R, be a C2 function of u = (u1, u2, . . . , un) ∈ W1 ×W2 × · · · ×Wn. For all
i 6= j, and i, j ∈ I = {1, 2, . . . , n}, suppose that

i. There exists at least one point ū such that ∇Ψ(ū) = 0,

ii. At all the points ū mentioned above, ∂
2Ψ
∂u2

i

(ū) < 0 and ∂2Ψ
∂ui∂uj

(ū) = 0 hold true.

Then, there exists a unique vector u∗ that satisfies ∇Ψ(u∗) = 0, and u∗ maximizes Ψ(·).

To simplify and shorten the formulations, for all i ∈ I, let us denote
i. αi := F−1

ξ (CSLmi ),
ii. Ai :=

∫ αi
−∞ xfξ(x)dx,

iii. Ui := αi(1− CSLi) + Ai,
iv. Vi(ri) := αi

[
(ri − ci)− (ri − si)CSLi

]
+ (ri − si)Ai.

With given vector CSLm, αi, Ai, and Ui are constants. Vi(·) is a function of ri only. Fur-
thermore, Π̂i(r) = Gi(r)Vi(ri) and Π̂(r) =

∑
i∈I Gi(r)Vi(ri). The following remarks represent

some related managerial and technical properties.

Remark 2. For a general distribution of total market demand ξ,
i. Price-elasticity of each channel’s demand is satisfied when E[ξ] > 0, ζi < 0.

ii. Relation between order quantity and price : if αi > 0, then ∂Q̂i

∂ri
(r) < 0 and ∂Q̂i

∂rj
(r) > 0 ;

if αi < 0, then ∂Q̂i

∂ri
(r) > 0 and ∂Q̂i

∂rj
(r) < 0.

iii. αi > 0⇔ CSLi > P(ξ < 0).
iv. Ui is an increasing function in αi and CSLi if ξ is non-negative random variable.

Remark 3. Suppose that B1 holds. Assume further that CSLi > 0 for all i ∈ I. We then have
i. αi > 0
ii. Ai > 0
iii. Ui > 0
iv. Vi(ci) < 0
v. Ui < αi

The proposition below shows the relationship between second-order derivatives, cross de-
rivatives with first-order derivatives of the objective function of problem (Q). It is the key
equations to prove its joint concavity property.

Proposition 3. For all i, j ∈ {1, 2, . . . , n}, i 6= j, we have

i. ∂
2Π̂
∂r2

i

(r) =
[
ζi(ri)−

ζ ′i(ri)
ζi(ri)

]
Gi(r)Ui +

[
ζ ′i(ri)
ζi(ri)

+ ζi(ri) (1− 2Gi(r))
]
∂Π̂
∂ri

(r),

ii. ∂2Π̂
∂ri∂rj

(r) = −
{
ζj(rj)Gj(r)∂Π̂

∂ri
(r) + ζi(ri)Gi(r) ∂Π̂

∂rj
(r)
}
.

From Lemma 2 and Proposition 3, we obtain the structural results on the total expected
profit function Π̂(r). They are represented in two propositions as follows

Proposition 4. Suppose that assumptions A1, A2, A3, B1 hold. If there exists a point r∗

satisfying ∇Π(r∗) = 0, it follows that ∂2Π̂
∂r2

i

(r∗) < 0 and ∂2Π̂
∂ri∂rj

(r∗) = 0, for all i, j ∈

{1, 2, . . . , n}, i 6= j.



Proposition 5. Suppose that assumptions A1, A2, A3, B1, B2 hold. Then, the function Π̂(r)
is jointly concave in all prices (ri)i∈I . Moreover, there exists a unique point r∗ satisfying
∇Π̂(r∗) = 0. Let Q∗ = (G1(r∗)F−1

ξ (CSLm1 ) , G2(r∗)F−1
ξ (CSLm2 ) , . . . , Gn(r∗)F−1

ξ (CSLmn )).
Then, (Q∗, r∗) is the unique global solution to the maximization problem

max
Q,r

Π(Q, r)

s.t. h(Q, r) = 0,
r ≥ c,

Q ≥ 0.

(Pm)

To summary, in this section, we study a chance-constrained optimization problem under
equality constraints on CSL (Pm), a relaxation of problem (P). It is equivalent to solving a
non-linear maximization problem (Q). We prove that the objective function of problem (Q)
is jointly concave in all its variables, given a set of assumptions. It follows that there exists
unique solution derived from first-order condition.

4 Conclusions and perspectives
In this paper, we prove the joint concavity of the objective function of a chance-constrained

optimization problem. This problem is motivated from omnichannel retailing when each chan-
nel’s demand is a stochastic function of prices, and each channel’s order quantity satisfies a
constraint on retailer’s cycle service level. Multiplicative attractive scenario was considered.
Our result holds true whenever all the sharing demand functions satisfies price elasticity as-
sumption. In addition, it also holds true whenever the total market demand’ s probability
distribution satisfy some regular conditions. The approach for verifying the joint concavity of
the objective function is highlighted when the normal approach by checking the negative semi-
definiteness of its associated Hessian matrix at all the points in the domain is not applicable.

For future research, one line of study is to investigate on chance-constrained programming
and deterministic nonlinear programming to figure out the solution of problem (P). Another
line for research is to analyze the optimization problem for a more extensive collection of
demand models (for example, addictive demand) and other service’ measure (such as fill rate).
It would also be interesting to improve the omnichannel model, which is embedded in the
objective function, with multiple choice of ordering and dynamic pricing. Last but not least,
it is meaningful to investigate the case of a decentralized supply chain and its effects on the
objective function and the optimal solutions.
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