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Abstract : Intermittency of renewable resources brings new challenges for the optimal in-
vestment planning of industrial power systems. Reliability, availability, and power quality con-
straints force to strictly ensure the system’s power balance during the operation. The risk of
power quality degradation is increased with the integration of large-scale photovoltaic plants that
face power variation due to cloud passage. If fossil generators cannot quickly compensate for
the solar power drops, a fast-responding storage system must take over to guarantee electrical
stability. Therefore, the sizing of industrial microgrid must integrate this storage system and
consider cloud passage which modifies the techno-economic optimization paradigm. In this pa-
per, sub-minute solar variability is anticipated thanks to robust scenarios and integrated within
the optimization formulation. A linear power quality constraint is formulated to evaluate the
storage needs for cloud passage resiliency. A case study is detailed and reports that short-term
variability impacts the optimal solution due to additional storage costs.
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1 Introduction
Industrial processes electrification and renewable integration are being more and more investi-
gated to reduce greenhouse gases emissions. However, in applications where no utility grid is
available, industrial facilities must rely on on-site generation (microgrids) which brings lots of
challenges related to electrical stability [2].

In previous work, the sizing of storage systems has been addressed thanks to dynamic models
[1] requiring highly detailed grid description and large computational resources. However, in
preliminary phases, industrial developers need a quick evaluation of techno-economic perfor-
mances which led to investigate optimization based on high-level grid description.

In [4], a robust formulation has been proposed to size the power generation of microgrids
but this work does not cover the resiliency over cloud passage. To address the electrical
stability, the operational model of the optimization problem must embed frequency deviation
constraints. This has been investigated in [3] thanks to non-linear optimization and benders
decomposition but the author raised concerns about the computational complexity of this
method. In addition, the frequency constrained formulations generally handle fossil generators
contingency and do not address the problem of renewable’s short term variations.

In previous work, we showed that storage system size depends on the level of variability of
the photovoltaic (PV) power profile [6]. To avoid using 1-second resolution profiles that cannot
be integrated in high-level energy models, the study proposed a method to identify isolated
solar ramp scenarios.

This paper intends to propose a mixed integer linear programming (MILP) formulation for
the optimal and robust sizing of industrial microgrids by considering robust solar variability
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scenarios and a linear stability constraint. In section 2, the MILP sizing problem is detailed.
Then, the robust management of cloud passage and its integration within the optimisation
problem are addressed in section 3. A case study is detailed in section 4. Finally, conclusions
are drawn in section 5.

2 Optimal sizing problem
The initial formulation of the power plant sizing is formulated in this section. Symbols of the
form ẋ refer to the decision variables. The optimization aims to find the best performing pair
of PV and battery installed capacities respectively denoted Q̇inst

P V and Q̇inst
bat . Eq. (1) shows the

objective function with cP V and cbat being the installation costs of PV and battery systems (in
$.kW −1) and cf referring to the aggregated fuel costs including CO2 penalty. The operating
costs are calculated at each hourly time step of the year (8760 steps) and over the lifetime Yinst

(in years) thanks to operational decision variables on fossil unit m at each timestep h : the fuel
consumption ḞCh,m, the unit power Ṗh,m the binary operating status ω̇h,m , the binary unit
start-up and shut down decisions ˙̇uh,m and v̇h,m. Additionally, Q̇used

P Vh
and Ṗ inj

P Vh
respectively

denote the decision variables for hourly PV available capacity after curtailment and hourly
injected PV power.

f = Q̇inst
P V ∗ cP V + Q̇inst

bat ∗ cbat + Yinst ∗
8760∑
h=1

∑
m

(ḞCh,m ∗ (cf )) (1)

Eq. (2) to (12) express the system operational constraints as formulated and detailed in [5].
Eq. (2) ensures that the hourly load demand Pl is satisfied. The injected PV power is calculated
in Eq. (3) thanks to the hourly averaged irradiance Ih and PV derating factor dP V . Eq. (4)
ensures that the hourly curtailed PV capacity is lower that the PV installed capacity. Eq. (5)
to (8) express the fossil generators operational constraints where P max

m and P min
m denote the

parameters for maximum and minimum power ratings and Mup
m and Mdn

m denote the parameters
for minimum up and down time of the fossil unit. The fuel consumption are evaluated thanks
to the fuel curve’s linear interpolation parameters am and bm in Eq. (11).

∀h,
∑
m

Ṗh,m + Ṗ inj
P Vh

− Plh ≥ 0 (2)

∀h, Ṗ inj
P Vh

≤ Q̇used
P Vh

∗ Ih ∗ dP V (3)

∀h, Q̇used
P Vh

≤ Q̇inst
P V (4)

∀h, m Ṗh,m ≤ P max
m ∗ ω̇h,m (5)

∀h, m Ṗh,m ≥ P min
m ∗ ω̇h,m (6)

∀h, m u̇h,m − v̇h,m ≥ ω̇h,m − ω̇h−1,m (7)

∀h, m u̇h,m + v̇h,m ≤ 1 (8)

∀m, ∀h ≥ Mup
m ,

h−1∑
k=h−Mup

m

ω̇k,m − Mup
m ∗ v̇h,m ≥ 0 (9)

∀m, ∀h ≥ Mdn
m , Mdn

m ∗ (1 − u̇h,m) −
h−1∑

k=h−Mdn
m

ω̇k,m ≥ 0 (10)



∀h, m ḞCh,m = amṖh,m + bm (11)

Eq. (12) and (13) ensures that fossil generators can compensate variations ∆Iavg
h between

the hourly average PV power and its minimum value. The decision variable ∆Ṗ avg
h,m denotes

the generator spinning reserve allocated to these variations.

∀h ∆Iavg
h Q̇used

P Vh
≤

∑
m

∆Ṗ avg
h,m (12)

∀h, m ∆Iavg
h Q̇used

P Vh
≤ ω̇h,mP max

m − Ṗh,m (13)

3 Robust management of cloud passage

3.1 A linear constraint to ensure power quality during cloud passage
The formulation detailed in section 2 ensures that the load balance is satisfied if PV power
variations happen. But in case of fast cloud passage, fossil generators cannot instantaneously
compensate the PV drop. This comes from the limited ramping capacities of fossil genera-
tors rrm (in MW.s−1) as compared to solar variations. The system’s equation of motion is
expressed in Eq. (14) where ∆P refers to incremental power variations of devices, M denotes
the system’s mechanical inertia and D refers to the system’s load damping constant. From
Eq. (14), frequency drops are expected to happen if PV power variations are not balanced. If
the grid frequency drops bellow a given minimum value, power producers and consumers must
disconnect to avoid a complete blackout and potential safety issues. Since Eq. (14) gives a
non-linear relationship between power unbalances and frequency shift, a linear approximation
of the system must be performed to allow its integration within the MILP problem.

d∆f

dt
= ∆Pfossil + ∆Pbat + ∆PP V − ∆Pl + D∆f

M
(14)

By assuming a linear power supply over time by fossil, battery and PV systems, Eq. (15)
formulates a linear constraint which ensures that no frequency shift will happen during a PV
drop of magnitude ∆P fc

P V and duration ∆T fc . The power adequacy is guaranteed by allocating
enough storage capacity P fc

bat. The battery reaches its maximum power at t = ∆T fc which gives
a lower bound for the storage capacity requirement.

P fc
bat = ∆P fc

P V − ∆T fc
∑
m

ω̇m ∗ rrm (15)

3.2 Cloud passage scenarios
Now that a linear constraint has been formulated, solar variability scenarios must be defined to
cover the risk of PV drop. The challenge of such task is to aggregate and extract isolated ramp
events from daily timeseries to allow their integration in a high level energy model. This is done
by finding worst-cases pairs of PV drop duration ∆T fc and magnitude ∆P fc

P V . By processing
irradiance timeseries by the ramp-detection technique detailed in [6], all solar drops have been
identified. Figure 1 reports an example of this process on a daily irradiance timeseries.

To find the worst-case events among all detected ramps, a convex hull Hmax is formed by
the set of highest irradiance drops as shown in figure 2a. This gives a first robust approach
to generate solar variability scenarios. Figure 2a is revealing that the maximum drop within
Hmax reaches 1.09 kW/m2. If the frequency constraint is similarly evaluated for each hour of
the day, risks of solar drop will be highly overestimated for hours of low irradiance.

An alternative to global convex hull consists in using hourly convex hulls Hmax
h . These sets

are formed by the worst ramp detected at each hour of the day. In this case, the maximum
solar drop between 7am and 8am is 0.44 kW/m2 whereas it reaches 1.09 kW/m2 between 11am
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FIG. 1: Pre-processing of irradiance timseries to identify irradiance drops

(a) (b)

FIG. 2: (a) : Global convex hull Hmax formed by highest irradiance drop. (b): hourly convex
hulls Hmax

h corresponding to morning hours

and 12am (highlighted by black circles in figure 2b). Therefore, risks of frequency drops are
evaluated with more accuracy and are not overestimated.

3.3 Integration within optimization problem

A static frequency constraint (Eq. (15)) have been proposed in the previous section and must
now be integrated in the optimization problem to ensure the system’s resiliency to cloud
passage. Ṗ fc

bath
denotes the hourly storage power that must be available to ensure cloud passage

compensation. The frequency constraint is expressed for all elements r = (∆Ifc
r , ∆T fc

r ) either
within the global hull (r ∈ Hmax) or hourly hull (r ∈ Hmax

h ).

∀h, r ∆Ṗ fc
P Vr

= Q̇inst
P V ∆Ifc

h,r ∗ dP V (16)

∀h, Q̇inst
bat ≥ Ṗ fc

bat,h (17)

To integrate the frequency constraint in the LP formulation, the cloud passage event is
divided in two main steps : the cloud passage (DC) and post-cloud state (PC).

Cloud passage phase In the cloud passage phase (denoted as DC), the frequency constraint
must be satisfied thanks to Eq. (18). ∆Ṗ DC

h,m,r denotes the contribution of fossil generator (m) at
the end of the cloud passage. Eq. (19) ensures that the fossil units do not violate their maximum



ramp-rates whereas Eq. (20) ensures that fossil generators do not meet their maximum power
ratings at the end of the cloud passage.

∀h, r ∆Ṗ fc
P Vh,r

≤ Ṗ fc
bath

+
∑
m

∆Ṗ DC
h,m,r (18)

∀h, m, r ∆Ṗ DC
h,m,r ≤ Tr ∗ rrm (19)

∀h, m, r ∆Ṗ DC
h,m,r ≤ ω̇h,mP max

m − Ṗh,m (20)

Post-cloud passage phase At the end of the post-cloud step, the battery should not provide
any power. Thus, fossil generator must keep increasing to reach a new equilibrium (secondary
frequency support). The PV gap ∆Ṗ fc

P Vh,r
must be solely filled by the fossil generation leading

to Eq. 21. ∆P P C
h,m,r denotes the contribution of the machine to the cloud compensation at the

end of the post-cloud state. Eq. (22) ensures that enough spinning reserve is available.

∀h, m, r ∆Ṗ fc
P Vh,r

≤
∑
m

∆Ṗ P C
m (21)

∀h, m, r ∆Ṗ P C
h,m,r ≤ ω̇h,mP max

m − Ṗh,m (22)

4 Case Study
The optimal sizing formulation is tested on a case study composed of 4 gas turbines and a
constant load profile of 130MW. The main input parameters are summarized in table 1. Four
cases are evaluated : in the "base case", no PV is considered which gives a reference for the
system without PV penetration. In the "No-FC" case, no frequency constraint is considered.
Frequency constraint is activated in "FC-global" and "FC-hourly" cases with worst case ramps
taken from global convex hull and hourly hulls respectively.

Category Name Symbol Unit Value
Project Lifetime Y inst Year 20
Fossil generation Ramp rate rrm MW.s−1 208

Fuel curve slope a m3.h−1.kW −1 13782
Fuel curve intercept b m3 5523
Fuel price cfuel $.mbtu−1 20

PV system Capex cinst
P V $.kW −1 600

Derating factor dP V % 80
Storage system Capex cinst

P V $.kW −1 400

TAB. 1: Techno-economic input parameters

Table 2 presents the results of the optimization. The base case reports the highest total costs.
The minimal costs is found for the "NO-FC" case thanks to 196.9 MW of PV installed capacity.
The CO2 emission is reduced by 16.7% as compared to the base case. However, this solution
not realistic since it does not take fast cloud passage into account : in this configuration, a
solar ramp of 0.65 kW.m−2 over 23 seconds (see figure 2b) would cause a power drop of 46MW
and lead to an electrical blackout. Activating the frequency constraint leads to a reduction of
PV capacity due to battery investments. In the "FC-global" case, the optimal solution gives a
PV installed capacity of 2.6MW which results in 0.24% of CO2 reduction. In the "FC-hourly"
case, the PV installed capacity reaches 67.1 MW and leads to 4.8% of CO2 savings.

Results show that activating frequency constraint leads to a reduction of PV installed capac-
ity. If the global convex hull is used, PV risks are overestimated and the battery need becomes



so high that fuel savings are not worth the investment in storage system. This supports the
interest of refining variability scenarios by considering convex hulls to improve the solution.

Base Case No FC FC-global FC-hourly
Total costs (B$) 4,95 4,24 4,93 4,76
Capex (m$) 0,0 118,1 1,5 49,5
Fuel OPEX (m$/year) 247 206 246 235
CO2 (mtons/year) 804 669 801 765
PV capacity (MW) 0,0 196,9 2,6 67,1
Battery capacity (MW) 0,0 0,0 0,0 23,2

TAB. 2: Results of sizing optimization

5 Conclusion
In this paper, a procedure to address short term variability in the sizing of industrial microgrids
is proposed. A linear power quality constraint is formulated and ensures that no frequency shift
appears during a PV power drop. Thanks to the detection of highest solar drops among an
irradiance dataset, worst case ramp scenarios are gathered in convex hulls. Then, the frequency
constraint is evaluated for each element of the worst case set. The case study showed that
considering frequency constraint with the most robust strategy significantly reduce the PV
installed capacity as compared to the standard formulation (2.6MW against 196.9MW). Using
hourly hulls improves the solution and leads to 4.8% of CO2 savings instead of 0.24%. Thus, this
method avoids over-estimating the power plant performances and ensures that operators will
not face electrical stability problems. A perspective is to formulate a stochastic optimization
problem integrating solar drop probabilities and offer a larger potential for PV integration.
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