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1 Introduction
The Alternating-Current Optimal Power Flow (ACOPF) is a fundamental optimization prob-
lem for power system analysis. Due to the nonconvexity of power flow equations, the ACOPF
is a difficult problem both in theory and in practice. Thanks to Interior Point (IP) algorithms
[11], developed starting in the 90s, the computation of ACOPF feasible solutions and local
optima is accessible, even for instances of several thousand nodes [1]. During the last decade,
researchers have been focusing on the design and solution of convex relaxations to bound the
optimality gap of feasible solutions found by IP algorithms. A review of various relaxation
techniques for the ACOPF problem is available in [8]. Despite these advances, finding global
optima of ACOPF instances with several hundreds of buses is challenging for state-of-the-
art algorithms, mostly branch-and-bound solvers based on Second-Order Cone Programming
(SOCP) [6], Quadratic Convex (QC) [4] or Semidefinite Programming (SDP) [2] relaxations.

In this quest towards global optimality, our contribution is threefold: (i) we propose a new
strengthening of the SDP relaxation based on angle difference limits on lines (ii) we combine
feasibility and optimality bound-tightening methods with a dynamic programming algorithm
to propagate the angles domain reduction (iii) we propose an original global optimization
algorithm that proceeds by solving a sequence of dynamically generated Mixed-Integer Linear
Programming (MILP) problems. Regarding the first point i.e. our new valid inequalities based
on angle differences limits, we explain in Sect. 3.1 how they differ from the cuts proposed in
[3, 9]. As concerns the third point: contrary to [7], a previous paper using piecewise relaxations
for the ACOPF, we use MILP models with SDP cuts instead of Mixed-Integer QC models. We
apply our global optimization algorithm on the IEEE PES PGLib [1] benchmark and compare
the optimality gaps with other recent and state-of-the-art global optimization approaches [5, 9]
that use this reference benchmark.

2 Mathematical programming formulations for the ACOPF

2.1 Original formulation

A power grid is as a network of buses interconnected by lines. It is modelled as an oriented
graph N = (B,L) with size n := |B|. The set L is such that (s.t.) L ∩ LR = ∅, where LR is
the set of couples (b, a) s.t. (a, b) ∈ L. A line ` ∈ L is described by a couple (b, a) s.t. b ∈ B is
the “from” bus (denoted by f), a ∈ B is the the “to” bus (denoted by t). Electricity generating
units are located at several buses in the network. We denote by Gb the set of generators
located at bus b ∈ B. The set of all generators is G := ∪b∈B Gb, whose cardinality is denoted
by m := |G|. The parameters of the ACOPF problem are described in Table 1. The ACOPF
is the nonconvex optimization problem formally described by formulation (OPF) below. We
emphasize that for any complex number x ∈ C, x∗ = Re(x)− i Im(x) is its complex conjugate,
|x| is its magnitude and ∠x its phase.



Parameters Index set Meaning
c1g ∈ R, c2g ∈ R+ g ∈ G Generator’s cost parameters
sg, sg ∈ C g ∈ G Generator’s domain bounds
vb, vb ∈ [0, 2] b ∈ B Normalised voltage magnitude bounds
Sd
b ∈ C b ∈ B Power demand
Y s
b ∈ C b ∈ B Shunt admittance
Y ff
ba, Y

ft
ba, Y

tf
ba , Y

tt
ba ∈ C (b, a) ∈ L Line impedance matrix

θba, θba ∈ [−π
2 ,

π
2 ] (b, a) ∈ L ∪ LR Angle difference limits

TAB. 1: Parameters of the ACOPF problem

OPF



min
V ∈Cn, S∈Cm

∑
g∈G

c1g Re(Sg) + c2g Re(Sg)2

∀b ∈ B vb ≤ |Vb| ≤ vb
∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B

∑
g∈Gb

Sg = Sd
b + (Y s

b )∗|Vb|2 +
∑

(b,a)∈L
(Y ff
ba)∗|Vb|2 + (Y ft

ba)∗VbV ∗a
+

∑
(a,b)∈L

(Y tt
ab)∗|Vb|2 + (Y tf

ab)∗VbV ∗a

∀(b, a) ∈ L |(Y ff
ba)∗|Vb|2 + (Y ft

ba)∗VbV ∗a | ≤ Sba
∀(a, b) ∈ L |(Y tt

ab)∗|Vb|2 + (Y tf
ab)∗VbV ∗a | ≤ Sab

∀(b, a) ∈ L ∪ LR θba ≤ ∠Vb − ∠Va ≤ θba

2.2 ACOPF reformulation based on extended variables

We introduce a symmetric set E ⊂ B × B of arcs s.t. (B, E) is a chordal extension of the
network N = (B,L), and a clique tree T of this chordal extension [10]. For any node k ∈ T ,
the set Bk ⊂ B is the corresponding clique of (B, E). We denote by Hn(E) the set of complex
vectors W indexed by E and s.t. Wba = W ∗ab for all (b, a) ∈ E . For any k ∈ T , we denote by
Bk the matrix (Wba)(b,a)∈B2

k
. Based on this notation, we reformulate the ACOPF as

OPFW



min
W∈Hn(E), S∈Cm

∑
g∈G

c1g Re(Sg) + c2g Re(Sg)2

∀b ∈ B v2
b ≤ Wbb ≤ v2

b

∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B

∑
g∈Gb

Sg = Sd
b + (Y s

b )∗Wbb +
∑

(b,a)∈L
(Y ff
ba)∗Wbb + (Y ft

ba)∗Wba

+
∑

(a,b)∈L
(Y tt
ab)∗Wbb + (Y tf

ab)∗Wba

∀(b, a) ∈ L |(Y ff
ba)∗Wbb + (Y ft

ba)∗Wba| ≤ Sba
∀(a, b) ∈ L |(Y tt

ab)∗Wbb + (Y tf
ab)∗Wba| ≤ Sab

∀(b, a) ∈ L ∪ LR tan (θba)Re(Wba) ≤ Im(Wba) ≤ tan (θba)Re(Wba)
∀(a, b) ∈ E |Wba|2 = WbbWaa (?)
∀k ∈ T WBk,Bk

� 0

While the clique-based SDP relaxation is well known, this clique-based reformulation of the
ACOPF problem itself is not properly stated in the literature, as far as we know. Yet, we
acknowledge that the proof of Th. 1 is closely related to the developments presented in [2].

Theorem 1 A pair (W,S) is feasible (resp. optimal) in (OPFW) if and only if it exists V
s.t. (V, S) is a feasible (resp. optimal) solution of (OPF) and Wba = Vb(Va)∗ for all (b, a) ∈ E.

Sketch of proof: We prove the equivalence for the feasibility, which also proves the equiva-
lence for the optimality since both problems share the same objective value. We take (V, S) a
feasible solution in (OPF) and we define W ∈ Hn(E) as Wba = VbV

∗
a for any (b, a) ∈ E . By

substitution and noticing that WBk,Bk
= VBk

V H
Bk
� 0, it is easy to see that (W,S) is feasible in

(OPFW). Conversely, we take any couple (W,S) feasible in (OPFW). Since WBk,Bk
� 0 and

|Wba|2 = WbbWaa for all (b, a) ∈ B2
k, we can apply [2, Prop. 6] to state that rank WBk,Bk

= 1
for all k ∈ T . Based on this and by induction on the number of cliques, we can construct a
vector V ∈ Cn s.t. Wba = Vb(Va)∗ for all (b, a) ∈ E (as in [2, Prop. 7]). By substitution in the
constraints of (OPFW), we see that (S, V ) is feasible in (OPF). �



3 Strenghtened SDP relaxation
In formulation (OPFW), the constraints (?) are the only non-convex constraints. Removing
them leads to the celebrated clique-based SDP relaxation [8]. Instead of deleting the constraints
(?), we outer-approximate them leveraging on the magnitude and angle difference bounds.

3.1 Convexification of the (?) constraints
For all b ∈ B, we introduce a variable Lb ∈ [vb, vb] that represents the magnitude |Vb|. For all
(b, a) ∈ E , we introduce a variable Rba ∈ R+ that stand for |Vb||Va| and is subject to

Rba ≥ vbLa + vaLb − vbva ∧ Rba ≥ vbLa + vaLb − vbva (1)
Rba ≤ vbLa + vaLb − vavb ∧ Rba ≤ vaLb + vbLa − vavb. (2)

For all b ∈ B, we also apply the following constraints

L2
b ≤ Rbb ∧ Rbb ≤ v2

b

vb − Lb
vb − vb

+ v2
b

Lb − vb
vb − vb

∧ Rbb = Wbb. (3)

Finally, for every clique k ∈ T , we require that( 1 LHBk

LBk
RBkBk

)
� 0. (4)

Whereas constraints (1)-(4) approximate the equality R2
ba = WbbWaa, we also need to approx-

imate |Wba| = Rba. For this purpose, we add the following valid constraints for all (b, a) ∈ E :

cos(θba + θba
2 )Re(Wba) + sin(θba + θba

2 )Im(Wba) ≥ Rba cos(θba − θba2 ) ∧ |Wba| ≤ Rba (5)

The following theorem show how the constraints (1)-(5) helps having |Wba|2 ≈ WbbWaa when
the magnitude and angle bounds are tightened.
Theorem 2 For (b, a) ∈ E, we set ∆1 := maxc∈{b,a} vc − vc and ∆2 = θba − θba. Under
constraints (1)-(5) and if ∆1 ≤ 1, we have ||Wba|2 −WbbWaa| ≤ 12∆2

1 + 4∆2
2.

For the sake of brevity, the proof of Theorem 2 is omitted in this short version of the article.
Adding the decision variables Lb and Rba to the optimization problem (OPFW) and replacing
the constraints (?) by the set of constraints (1)-(5), we obtain a conic programming prob-
lem (R) in complex numbers, that is tighter than the rank-relaxation. This convexification
approach differs from [3, 9] because we introduce the variables Rba which are interlinked via
McCormick (1) and SDP constraints (4), whereas the nonlinear cuts in the aforementioned
articles independently convexify the feasible sets for pairs (Wba,Wbb).

3.2 Feasibility-based bound tightening (FBBT)

The power flow limits in the lines implicitly imply bounds on the phase ∠VbV ∗a and thus could
help us reduce the interval [θba, θba] and thus the error bound in Th. 2. We choose any line
(b, a) ∈ L. Dividing the inequality |(Y ft

ba)∗VbV ∗a +(Y ff
ba)∗|Vb|2| ≤ Sba by |Y ft

baVbVa|, we deduce that
| VbV

∗
a

|Va||Vb| − z
|Vb|
|Va| | ≤ R, where z := (Y ff

ba)∗

(Y ft
ba

)∗ and R := S`

|Y ft
ba
VbVa|

. We notice that u := VbV
∗

a

|Va||Vb| is a unit
complex number and has a nonnegative real part since ∠Vb−∠Va ∈ [−π

2 ,
π
2 ]. Representing the

ratio |Vb|
|Va| by a variable λ, we can formulate the following small convex programming problem

max
u,λ

Im(u) s.t. |u− zλ| ≤ R ∧ Re(u) ≥ 0 ∧ |u| ≤ 1 ∧ λ ∈ [ vb
va
,
vb
va

].

Denoting by h its value, we deduce that arcsin(h) is an upper-bound on ∠Vb−∠Va. Hence, we
can redefine θba := min(θba, arcsin(h)) without changing the value of (OPF). If we minimize
Im(u) under the same constraints to get a value h, we can redefine θba := max(θba, arcsin(h)).
Similarly for any (a, b) ∈ L, leveraging on |(Y tf

ab)∗VbV ∗a + (Y tt
ab)∗|Vb|2| ≤ Sab, we can use the

same procedure with z := (Y tt
ab)∗

(Y tf
ab

)∗ and R := S`

|Y tf
ab
VbVa|

to tighten θba and θba.



3.3 Optimality-based bound tightening (OBBT)

We use a local solver like an nonlinear IP solver to find an ACOPF feasible solution. The
corresponding upper-bound obj enables us to add the constraint

∑
g∈G

c1g Re(Sg) + c2g Re(Sg)2 ≤

obj to the relaxation (R), which yields a convex set F for the tuplet (S,W,L,R). Then,
• (Magnitude) We set vi ← max(S,W,L,R)∈F Li and vi ← min(S,W,L,R)∈F Li,

• (Phase) We compute hba := max(S,W,L,R)∈F Im(Wba) and hba := min(S,W,L,R)∈F Im(Wba)
and set θba ← min(θba, arcsin(max( hba

vbva
, hba

vbva
))) and θba ← max(θba, arcsin(min( hba

vbva
,
hba

vbva
))).

3.4 Floyd-Warshall algorithm to tighten angle difference bounds

Through FBBT and OBBT, we may individually improve the bounds θba and θba for any (b, a) ∈
E . To propagate the bound tightening, we use a dynamic programming algorithm based on the
following valid updates for any b, a, c s.t. (b, a), (b, c), (c, a) ∈ E3: θba ← min(θba, θbc + θca) and
θba ← max(θba, θbc+θca). Hence, we notice that we can apply a Floyd-Warshall like algorithm.
We execute it only inside cliques to avoid a computation burden.

4 A MILP-based global optimization algorithm
Leveraging on the solution of the strengthened SDP relaxation, we generate a sequence of
MILP problems whose values converge to the ACOPF value.

4.1 Binary variables to encode piecewise linear constraints

Splitting magnitude intervals For any b ∈ B, we may want to split the interval [vb, vb]
in Kb subintervals. We thus introduce pairs (vbk, vbk) for k ∈ {1, . . . , Kb} s.t. vbk ≤ vbk,
vbk = vb k+1, vb1 = vb and vbKb

= vb. For any k ∈ {1, . . . , Kb}, we introduce a variable
xbk ∈ {0, 1}. To encode xbk = 1 =⇒ Lb ∈ [vbk, vbk], we write

Kb∑
k=1

xbk = 1 ∧
Kb∑
k=1

vbkxbk ≤ Lb ≤
Kb∑
k=1

vbkxbk.

Moreover we add the following constraint for every k ∈ {1, . . . , Kb},

Rbb ≤ v2
bk

vbk − Lb
vbk − vbk

+ v2
bk

Lb − vbk
vbk − vbk

+ v2
b(1− xbx).

For every k ∈ {1, Kb} and for all a ∈ B s.t. (b, a) ∈ E , we add the following inequalities:

Rba ≥ vbkLa + vaLb − vbkva + vbva(xbk − 1) ∧ Rba ≥ vbkLa + vaLb − vbkva + vbva(xbk − 1)
Rba ≤ vbkLa + vaLb − vavbk + vbva(1− xbk) ∧ Rba ≤ vaLb + vbkLa − vavbk + vbva(1− xbk).

Splitting angle intervals For any (b, a) ∈ E , we may want to split the interval [θba, θba] in
Jba subintervals. We introduce pairs (θbaj , θbaj) for j ∈ {1, . . . , Jba} s.t. θbaj ≤ θbaj , θbaj =
θba j+1, θba0 = θba and θbaJba

= θba. For j ∈ {1, . . . , Jba}, we introduce a variable δbaj ∈ {0, 1}.
To encode δbaj = 1 =⇒ ∠Wba ∈ [θbaj , θbaj ], we write

∑Jba
j=1 δbaj = 1 and for j ∈ {1, . . . , Jba},

tan (θba)Re(Wba) + (δbaj − 1)vbva ≤ Im(Wba) ≤ tan (θba)Re(Wba) + (1− δbaj)vbva

For all j ∈ {1, . . . , Jba}, we also define the angle θ̂baj = θbaj+θbaj

2 and write

cos(θ̂baj)Re(Wba) + sin(θ̂baj)Im(Wba) ≥ Rba cos(
θbaj − θbaj

2 ) + (δbaj − 1)vbva

The division of the intervals [vb, vb] and [θba, θba] is dynamically made, by solving MILP
problems of increasing size. In the following,“adding a magnitude breakpoint to b” means that
Kb ← Kb + 1. Similarly,“adding an angle difference breakpoint to (b, a)” means Jba ← Jba + 1.



4.2 The MILP-based iterative scheme

The following asymptotically converging algorithm is executed for global optimization, based
on (i) a local optimization IP solver (ii) a conic programming solver and (iii) a MILP solver.

0. Initialization: An ACOPF feasible solution is computed with a local solver and the
conic programming relaxation (R) is solved. If the gap is greater than targetOptGap, we
apply FBBT and OBBT to (R). Based on the optimal primal-dual solution of the conic
problem (R) we deduce active cuts for the QC and SDP constraints and generate a LP
relaxation (RL) with the same value than (R). The next iterations then tighten (RL).

1. Outer-iterations: As long as (i) the optimality gap is larger than targetOptGap and (ii)
ε(W ) := max(b,a)∈E | |Wba|2 −WbbWaa| ≥ ε (targeted accuracy), then:

• For at most N1 couples with largest violation |R2
ba−WbbWaa| ≥ ε, we add magnitude

breakpoints for b and a to divide the active subintervals [vbk, vbk] and [vak, vak],
• For at most N2 couples (b, a) ∈ E with largest violation | |Wba| − Rba| ≥ ε, we add

an angle difference breakpoint for (b, a) to divide the active subinterval [θbaj , θbaj ],
• We solve the resulting MILP problem to global optimality to get (S,W,L,R).

2. Inner-iterations: While the solution (S,W,L,R) violate some QC and SDP constraints
(within tolerance αε(W ) for α ∈]0, 1[) of the relaxation (R), we add the corresponding
cuts and solve the resulting MILP problem to global optimality to get (S,W,L,R).

5 Numerical results
For all experiments, we use a 64-bit Ubuntu computer with 32 Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz and 32 GB RAM. Along this algorithm, we use the commercial solvers MOSEK
and CPLEX called through their Python APIs, as well as the academic solver MIPS [11].
Our code is available at github.com/aoustry/SDP-MILP4OPF. We consider an optimality gap
of 0.01% for global optimality (GOPT) and we set a time limit of 10 hours for the bound-
tightening and 5 hours for the iterative scheme. This study focuses on the network instances
from the IEEE PES PGLib AC-OPF v21.07 library [1] with less than 300 buses. We compare
our approach with the standard SOCP and SDP relaxations [8], and with two other global
optimization approaches that have been applied to this benchmark. In [5], the authors compute
the 1st and 2nd relaxations of Lasserre Hierarchy, as well as a SDP relaxation strengthened with
RLT cuts and OBBT. In [9], the authors apply OBBT to several strengthened QC relaxations.
Comparing the execution times would not necessarily be fair in so far as authors in [5, 9] use
computing clusters of several machines, whereas we use a single machine; yet, we underline that
our maximum execution time limit has the same order of magnitude as in [5, 9] i.e. between
5 and 15 hours. Table 2 shows that our approach closes the gap for 19 over 30 instances. For
7 of these 19 instances, it is the only one among the three benchmarked algorithms to reach
global optimality. For 25 over 30 instances, our approach has the lowest optimality gap.
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