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1 Introduction
Given a set of cities and distances to travel between each pair of them, the Traveling Salesman

Problem (TSP) is to find a shortest tour which visits every city exactly once and returns to
the starting city. In some practical cases, the balance between edges in the tour is as important
as the total distance. It motivates us to study an equitable version of TSP where the optimal
tour satisfies : i) Pareto optimality (i.e. not improvable on all distances simultaneously), ii)
fairness (or the balance between edges). In this work, we study a variant of TSP where the
ordered weighted averaging (OWA) is used to control both Pareto efficiency and fairness, we
call this problem OWATSP. OWA imposes implicitly the balance between edges by Pigou-
Dalton transfer principle claiming that a transfer from a richer resource to a poorer one results
in a fairer distribution.

OWATSP belongs to the class of fair combinatorial optimization considered in [2]. The main
challenge of this problem class is the non-linearity of OWA objective. Fortunately, it can be cast
to Mixed-Integer Programs (MIPs) by several existing linearization methods [3, 1]. However,
the time spent to solve exact formulations increases considerably with the size of instances and
might reach to hours for small-size ones. To tackle the issue, an iterative algorithm based on
Lagrangian relaxation [2] is proposed and verified the efficiency on several fair optimization
problems related to matching. In this paper, we focus on algorithms to solve efficiently large-size
instances of OWATSP - an NP-hard problem.

2 Solving methods for OWATSP

2.1 Problem formulation

Consider a complete graph G = (V, E) where V = [n] := {1, 2, . . . , n} and a cost vector
c ∈ R|E|

+ . OWA of v ∈ Rn is given by OWAw(v) = w1θ1(v) + · · · + wnθn(v) where wi ∈
[0, 1], w1 > · · · > wn > 0 and θi(v) is the ith largest component of vector v = (v1, v2, . . . , vn).
OWATSP is define as follows :

min
H∈Π(G)

OWAw((c)H)

where Π(G) is the set of all Hamiltonian cycles in G, (c)H is a cost vector of selected edges in
H. OWATSP is a non-linear optimization problem as OWA operator. Moreover, OWATSP is
NP-hard since it contains the problem of finding a Hamiltonian cycle in G.

2.2 MIP formulations for OWATSP

To get MIPs for OWATSP, we first consider a directed version of G where every edge ij is
replaced by two arcs (i, j) and (j, i). The cost vector of selected edges in a tour can be rewritten
as v = (

∑
j∈[n] ci,jxi,j)i∈[n] where x ∈ {0, 1}n×n represents a tour in the directed graph.



Table 1.1 MIP [3] MIP [1] AlgoOpt [2]
Instance Time Time Time Gap
burma14 0.83 0.45 1.62 0.06%
fri26 21.01 49.97 5.74 0.00%
hk48 1943.39 719.89 32.21 0.03%

Table 1.2 AlgoOpt [2]
Instance Time
berlin52 36.02
eil76 217.552
rat99 833.335

TAB. 1 – Experiment results of all methods for small instances (Table 1.1) and the heuristic
algorithm for larger ones (Table 1.2).

Two linearization methods for OWA are proposed by Ogryczak et al. [3] and Chassein et al.
[1]. The key idea of Ogryczak’s approach is to use Lorenz components to reformulate OWA, i.e.
min OWAw(v) = min

∑
k∈[n] w′

kLk(v) where Lk(v) =
∑

i∈[k] θi(v) and w′
k = wk − wk+1, ∀k ∈

[n − 1], w′
n = wn. Then, each Lorenz component is computed by a linear programming (LP)

with n + 1 extra variables and n new constraints. Hence, OWATSP can be represented as a
MIP using n2 + n additional variables and n2 new constraints. On the other hand, Chassein
starts from the observation that min OWAw(v) = min maxτ∈P

∑
i∈[n] wτ(i)vi where P is the set

of all permutations of {1, . . . , n}. The inner optimization problem is rewritten as a LP by using
the permutahedron and dualized to get a minimization problem which utilizes 2n additional
variables and n2 new constraints. We get an alternative formulation for OWATSP, which uses
the same number of new constraints but only 2n extra variables instead of n2 + n one as in [3].

2.3 Heuristic algorithm for OWATSP

Although MIPs solve efficiently OWATSP in small-size instances, the CPU time increases
very quickly with instances’ size. To tackle this issue, a fast heuristic algorithm based on
Lagrangian relaxation is employed as done in [2]. In particular, we consider Lagrangian relaxa-
tions L(λ) of MIPs where λ is Lagrangian multipliers. The algorithm starts with a feasible λ,
computes the associated x by solving L(λ) and uses the latter to iteratively improve λ. The
algorithm terminates when the max iteration has been reached or change on λ is small.

3 Experiment results
We utilize instances of TSPLIB to evaluate these methods. Table 1.1 shows that the CPU

time spent for solving exact formulations increases exponentially with the size of instance.
In contrast, the heuristic algorithm gives high-quality quasi-solutions quickly and can obtain
optimal solutions for several instances. Furthermore, the running time rises acceptably when
applying the heuristic algorithm for larger instances as shown in Table 1.2.
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