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1 Context
The Vehicle Routing Problem with Time Windows (VRPTW) is an extension of the well-known
Vehicle Routing Problem, where time is considered as an important resource. The reader is
referred to [3] for a broad overview of routing problems and their resolutions. In VRPTW,
the customers are only available during specific time windows. The objective of this problem
is to design routes of vehicles, starting at a same location, called depot, to serve n customers,
while minimizing the total distance covered by the vehicles. Moreover the sum of the demands
of the customers on a route can not exceed the capacity of the vehicle, and all time windows
have to be respected. This problem is known to be NP-complete, and thus, it is hard to solve
for large instances.

However, in real life problems, a decision maker may not be interested in optimizing only
one objective but in several ones. Among the objectives studied in the literature [2] we find the
total traveled distance and the total waiting time of drivers. Considering these two objectives
turns the VRPTW into the Multi-Objective VRPTW (MO-VRPTW).

Multi-Objective Problems (MOP) can be solved using a Pareto approach where the objective
is to find the best set of non dominated solutions, called Pareto-front. The Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D) [4] is known to efficiently solve
MOP. Over the last years, with the increasing success of machine learning, many studies
integrate machine learning tools to solve combinatorial problems. If it starts to be quite
common in the field of single-objective optimization, it remains uncommon to solve multi-
objective combinatorial problems.

In particular the Pattern Injection Local Search (PILS) [1] has been designed to solve the
well-known Capcitated VRP by using data mining techniques. In our work we have designed
a new mechanism called MOPILS, based on PILS, and hybridized it with MOEA/D to solve
MO-VRP.

2 The MOPILS Mechanism
Briefly, the PILS mechanism is built over two main concepts: pattern extraction (PE) and
pattern injection (PI). Note that, in routing problems, a pattern is a sequence of consecutive
customers inside a route. First, the PE mechanism identifies frequent patterns and stores
them (incrementing the frequency if a pattern has already been found), so that, they can be
used during the PI step. Then, during the PI process, a few frequent patterns are tentatively
inserted in the current solution to define high-order local search moves.

The idea behind MOPILS is to generalize the two mechanisms of PILS, so that, they can
handle multi-objective problems. Thus we propose MOPE, a multi-objective pattern extraction,
and MOPI, a multi-objective pattern injection, which form together the MOPILS mechanism.



Classic Hybrid HybridRG

Rank (size 50) 3 1.3 1.7
Rank (size 100) 3 1.63 1.37

TAB. 1: Mean rank of each variant for each size of instance considered.

The idea behind the MOPE procedure is to regroup frequent patterns that are relevant for
a given portion of the Pareto-Front. That is why we start by defining groups which contain
close solutions on the Pareto-front. Hence each group refers to a set of patterns which can
be used during MOPI. Patterns extracted from a solution s during MOPE are only stored in
groups which contain the solution s. Note that several groups can contain the same solution.
Then, patterns stored in a group will improve solutions of this group only. On the other hand
MOPI aims to diversify a set of solutions by using PI with different sets of patterns. Each set
of patterns used for injection is a subset of a group defined in MOPE.

3 Hybridization with MOEA/D and Experimental Results
MOEA/D approximates the Pareto-front by decomposing the problem into a number of single
objective problems (where the fitness is an aggregation of all the objectives). Here we consider
a weighted sum of the two objectives. Thus each subproblem is characterized by a unique
weight vector w = (w1, w2) with wi ∈ [0, 1]. Hence given a subproblem i and its weight vector
wi it is possible to compute the neighborhood (e.g. the k nearest neighbors) of i, by computing
the euclidean distance between wi and wj for all subproblems j 6= i. For MOPE, we associate
a group to each subproblem, so that, we have as many groups as subproblems. To define the
i-th group, we propose to consider the neighborhood of the subproblem i to extract patterns
relatively close in the objective space. Finally, our hybridization works as follows: first an
initialisation phase is performed to generate an initial population and define the groups for
MOPE. Then for each subproblem i two solutions are randomly selected in the neighborhood
of i and a crossover is performed. MOPI is performed just after the crossover, then a local
search is performed to reach a local optimum, and finally MOPE is applied. A mutation can
also occur after the crossover.

For our tests we use the Solomon’s instances of size 50 and 100. For each size three types of
generation are available (R, C and RC). We compare three variants of MOEA/D: the classic
MOEA/D (Classic), the hybridization (Hybrid), and a variant of our hybridization where the
group of patterns used in MOPI is selected randomly. Both Classic and Hybrid variants are
tuned with iRace. Then for each instance we apply each algorithm 20 times, and we compare
the mean of the hypervolumes obtained with a common reference solution (we recall that the
higher the hypervolume, the better the pareto-front). Table 1 compares the mean ranks of the
variants proposed. Experiments show that both hybrid algorithms give better performance
than the classic MOEA/D. Moreover, the patterns have to be extracted using neighboring
solutions.
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