Probability Learning Based Feasible and Infeasible Tabu Search for Airport Gate Assignment

Mingjie LI^{1,2}, Jin-Kao HAO², and Qinghua WU¹

¹ School of Management, Huazhong University of Science and Technology, Wuhan, China ² LERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France

Mots-clés : Heuristics, reinforcement learning, tabu search, airport gate assignment.

1 Introduction

Airport gate assignment is an important decision problem that airport professionals must face every day. The problem involves in assigning each aircraft to an available gate to meet operational requirements while maximizing the convenience for passengers and airport operation efficiency. In this work, we study the passenger-oriented gate assignment problem (GAP) that aims to minimize the total walking distance.

In this model, G is the set of airport gates, F is the set of aircraft, a_i is the arrival time of aircraft *i*, d_i is the departure time of aircraft *i*, c_{ij} is the number of passengers transferring from aircraft *i* to aircraft *j*, w_{lm} is the walking distance between gates *l* and *m*, x_{il} is a binary decision variable taking the value of 1 if aircraft *i* is assigned to gate *l*, and it is 0 otherwise. On the basis of these parameters and decision variables, GAP can be formulated as the following mixed integer nonlinear program :

$$\min \quad Z(S) = \sum_{i \in F} \sum_{j \in F} \sum_{l \in G} \sum_{m \in G} c_{ij} w_{lm} x_{il} x_{jm} + \sum_{i \in F} \sum_{l \in G} (c_{i0} w_{l0} + c_{0i} w_{0l}) x_{il}$$
(1)

s.t.
$$\sum_{l \in G} x_{il} = 1, \ \forall i \in F$$
 (2)

$$x_{il}x_{jl}(d_j - a_i)(d_i - a_j) \ge 0, \ \forall i, j \in F, \ \forall l \in G$$

$$(3)$$

$$x_{i,l} \in \{0,1\}, \ \forall i \in F, \ \forall l \in G \tag{4}$$

This model is the basis of many GAP variants and has been extended in the literature to other GAP formulations. As such, an algorithm designed for this model can be adapted to solve other related problems. We investigate the GAP by proposing an effective heuristic algorithm.

2 Probability learning based feasible and infeasible tabu search

We propose a probability learning based feasible and infeasible tabu search (PLFITS) algorithm to solve the GAP [3], which integrates a feasible and infeasible tabu search procedure within the probability learning based framework [4]. During the PLFITS search process, problem-specific knowledge is learned via its probability learning procedure. The learned information, recorded in a probability matrix, is applied to guide the algorithm toward promising search regions. As such, PLFITS iteratively explores the given search space by alternating between probability learning and local search to attain a better balance of search diversification and intensification. Its general scheme is composed of four main components : a gate selection strategy (to select a gate for each aircraft according to the probability matrix), a strategic oscillation procedure (to allow the search to oscillate between the feasible and infeasible search spaces to find high-quality local optimal solutions), a probability updating rule (to update the probability that each aircraft should be assigned to each gate according to feedback information), and a probability smoothing technique (to forget some aged decisions that are considered obsolete). The algorithm repeats the these four components until a stopping condition is reached.

3 Computational results

We report computational results of the proposed algorithm on a set of 20 real-world benchmark instances collected by Cheng et al. [1] arising from Incheon International Airport (ICN). These instances can be classified into three groups by setting the percentage of transfer passengers π respectively to 0.1, 0.3, and 0.5. Comparisons are made with two reference algorithms, including a simulated annealing tabu search (SATS) [1], and a tabu search with path relinking (TSPR) [2]. We run ten times our PLFITS algorithm to solve each instance with the same time limit (200 seconds on Intel Xeon E5-2670 2.5GHz). Table 1 shows the comparative results, including the best and average objective values, the average computing times, and the gaps between the best objective values attained by PLFITS and the best-known results, indicating the PLFITS algorithm dominates the reference algorithms (better results are highlighted in bold). In particular, PLFITS reports improved best-known solutions (new upper bounds) for all the 20 ICN instances with improvements ranging from 2.6% up to 11.85%.

TAB. 1 – Comparative results on the ICN instances.

1										
Date	Instance size	π	SATS		TSPR		PLFITS			
			f_{best}	t_{avg}	f_{best}	t_{avg}	f_{best}	f_{avg}	t_{avg}	Gap
Friday	294x74	0.1	27091415	170	26945560	185	25926530	26081164.50	114.82	-3.78
Saturday	290x74	0.1	27001350	174	26800315	185	25966585	26087735.00	95.25	-3.11
Sunday	304x74	0.1	30016505	193	29764555	201	28910295	29053005.00	104.92	-2.87
Monday	297x74	0.1	27554290	185	27668210	207	26699195	26852055.50	122.00	-3.10
Tuesday	290x74	0.1	26055045	180	25780535	196	24906875	24983420.50	122.11	-3.39
Wednesday	279x74	0.1	25092430	151	24875240	173	24227945	24315138.00	127.04	-2.60
Thursday*	289x74	0.1	27515505	168	27155365	190		21010100.00	121101	2.00
Friday	294x74	0.3	29325270	184	29274210	196	27158465	27269086.00	143.94	-7.23
Saturday	290x74	0.3	29378545	194	29272310	224	26977360	27130970.50	117.11	-6.67
Sunday	304x74	0.3	31690910	199	31642165	$\bar{2}\bar{2}\bar{6}$	29673555	29788407.00	136.52	-6.22
Monday	297x74	0.3	29798700	219	30025230	228	27739185	27887095.50	155.72	-6.91
Tuesday	290x74	0.3	28050095	189	27898320	$210 \\ 211$	25712685	25807973.00	131.25	-6.80
Wednesday	279x74	0.3	27816840	156	27588215	174^{11}	25456930	25637756.50	145.80	-7.73
Thursday	289x74	0.3	29472105	186	29402315	205	27056815	27218636.50	145.57	-7.98
Friday	294x74	0.5	31679360	199	31304880	213	27879920	28099215.00	121.33	-10.94
Saturday	290x74	0.5	31436665	195	31337070	213	27971855	28036805.00	155.17	-10.74
Sunday	304x74	0.5	35011240	217	35050585	261	30861150	30981396.00	166.91	-11.85
Monday	297x74	0.5	31989310	213	31900725	234	28559395	28692073.50	165.01	-10.47
Tuesday	290x74	0.5	30112340	198	30069210	223	26664255	26782922.00	120.78	-10.70
Wednesday	279x74	0.5	29751435	175	29667010	201	26457175	26615683.50	120.73 134.41	-10.82
Thursday	289x74	0.5	31896375	194	31755335	228	28087180	28266150.00	155 12	-11 47

* The data of this instance is no more available in the literature (the authors of [1] failed to provide the initial data).

Finally, the probability learning and the mixed feasible-infeasible search strategies are general and can be used to tackle other airport gate assignment problems with different objectives and constraints or other problems with complex constraints. For further research, more efforts are needed to investigate exact and approximation methods with quality guarantees.

Références

- Cheng, C. H., Ho, S. C., & Kwan, C. L. (2012). The use of meta-heuristics for airport gate assignment. *Expert Systems With Applications*, 39(16), 12430-12437.
- [2] Cheng, C. H., Gunasekaran, A., Ho, S. C., Kwan, C. L., & Ng, T. D. (2017). Hybrid tabu searches for effective airport gate management. *International Journal of Operational Research*, 30(4), 484-522.
- [3] Li, M., Hao, J. K., & Wu, Q. (2021). Learning-driven feasible and infeasible tabu search for airport gate assignment. *European Journal of Operational Research*, https://doi.org/10.1016/j.ejor.2021.12.019.
- [4] Zhou, Y., Duval, B., & Hao, J. K. (2018). Improving probability learning based local search for graph coloring. *Applied Soft Computing*, 65, 542-553.