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1 Introduction

Airport gate assignment is an important decision problem that airport professionals must
face every day. The problem involves in assigning each aircraft to an available gate to meet op-
erational requirements while maximizing the convenience for passengers and airport operation
efficiency. In this work, we study the passenger-oriented gate assignment problem (GAP) that
aims to minimize the total walking distance.

In this model, G is the set of airport gates, F' is the set of aircraft, a; is the arrival time
of aircraft 7, d; is the departure time of aircraft ¢, ¢;; is the number of passengers transferring
from aircraft ¢ to aircraft j, wy,, is the walking distance between gates [ and m, x;; is a binary
decision variable taking the value of 1 if aircraft 7 is assigned to gate [, and it is 0 otherwise. On
the basis of these parameters and decision variables, GAP can be formulated as the following
mixed integer nonlinear program :
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This model is the basis of many GAP variants and has been extended in the literature to other
GAP formulations. As such, an algorithm designed for this model can be adapted to solve
other related problems. We investigate the GAP by proposing an effective heuristic algorithm.

2 Probability learning based feasible and infeasible tabu search

We propose a probability learning based feasible and infeasible tabu search (PLFITS) al-
gorithm to solve the GAP [3], which integrates a feasible and infeasible tabu search proce-
dure within the probability learning based framework [4]. During the PLFITS search process,
problem-specific knowledge is learned via its probability learning procedure. The learned infor-
mation, recorded in a probability matrix, is applied to guide the algorithm toward promising
search regions. As such, PLFITS iteratively explores the given search space by alternating
between probability learning and local search to attain a better balance of search diversifi-
cation and intensification. Its general scheme is composed of four main components : a gate
selection strategy (to select a gate for each aircraft according to the probability matrix), a
strategic oscillation procedure (to allow the search to oscillate between the feasible and infea-
sible search spaces to find high-quality local optimal solutions), a probability updating rule (to



update the probability that each aircraft should be assigned to each gate according to feed-
back information), and a probability smoothing technique (to forget some aged decisions that
are considered obsolete). The algorithm repeats the these four components until a stopping
condition is reached.

3 Computational results

We report computational results of the proposed algorithm on a set of 20 real-world bench-
mark instances collected by Cheng et al. [1] arising from Incheon International Airport (ICN).
These instances can be classified into three groups by setting the percentage of transfer passen-
gers m respectively to 0.1, 0.3, and 0.5. Comparisons are made with two reference algorithms,
including a simulated annealing tabu search (SATS) [1], and a tabu search with path relink-
ing (TSPR) [2]. We run ten times our PLFITS algorithm to solve each instance with the same
time limit (200 seconds on Intel Xeon E5-2670 2.5GHz). Table 1 shows the comparative results,
including the best and average objective values, the average computing times, and the gaps
between the best objective values attained by PLFITS and the best-known results, indicating
the PLFITS algorithm dominates the reference algorithms (better results are highlighted in
bold). In particular, PLFITS reports improved best-known solutions (new upper bounds) for
all the 20 ICN instances with improvements ranging from 2.6% up to 11.85%.

TAB. 1 — Comparative results on the ICN instances.

SATS TSPR PLFITS
Date Instance size ™ fvest tavg foest tavg fvest fa'vg tavg Gap
Friday 294x74 0.1 27091415 170 26945560 185 25926530 26081164.50 114.82 -3.78
Saturday 290x74 0.1 27001350 174 26800315 185 25966585 26087735.00 95.25 -3.11
Sunday 304x74 0.1 30016505 193 29764555 201 28910295 29053005.00 104.92 -2.87
Monday 297x74 0.1 27554290 185 27668210 207 26699195 26852055.50 122.00 -3.10
Tuesday 290x74 0.1 26055045 180 25780535 196 24906875 24983420.50 122.11 -3.39
‘Wednesday 279x74 0.1 25092430 151 24875240 173 24227945 24315138.00 127.04 -2.60
Thursday* 289x74 0.1 27515505 168 27155365 190
Friday 294x74 0.3 29325270 184 29274210 196 27158465 27269086.00 143.94 -7.23
Saturday 290x74 0.3 29378545 194 29272310 224 26977360 27130970.50 117.11 -6.67
Sunday 304x74 0.3 31690910 199 31642165 226 29673555 29788407.00 136.52 -6.22
Monday 297x74 0.3 29798700 219 30025230 228 27739185 27887095.50 155.72 -6.91
Tuesday 290x74 0.3 28050095 189 27898320 211 25712685 25807973.00 131.25 -6.80
‘Wednesday 279x74 0.3 27816840 156 27588215 174 25456930 25637756.50 145.80 -7.73
Thursday 289x74 0.3 29472105 186 29402315 205 27056815 27218636.50 145.57 -7.98
Friday 294x74 0.5 31679360 199 31304880 213 27879920 28099215.00 121.33 -10.94
Saturday 290x74 0.5 31436665 195 31337070 213 27971855 28036805.00 155.17 -10.74
Sunday 304x74 0.5 35011240 217 35050585 261 30861150 30981396.00 166.91 -11.85
Monday 297x74 0.5 31989310 213 31900725 234 28559395 28692073.50 165.01 -10.47
Tuesday 290x74 0.5 30112340 198 30069210 223 26664255 26782922.00 120.78 -10.70
‘Wednesday 279x74 0.5 29751435 175 29667010 201 26457175 26615683.50 134.41 -10.82
Thursday 289x74 0.5 31896375 194 31755335 228 28087180 28266150.00 155.12 -11.47
* The data of this instance is no more available in the literature (the authors of [1] failed to provide the initial data).

Finally, the probability learning and the mixed feasible-infeasible search strategies are general
and can be used to tackle other airport gate assignment problems with different objectives and
constraints or other problems with complex constraints. For further research, more efforts are
needed to investigate exact and approximation methods with quality guarantees.
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