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1 Introduction

We consider a Dynamic Voltage and Frequency Scaling (DVFS) processor executing jobs with
obsolescence deadlines. Forcing hard deadlines requires to consider the worst cases with only a
finite number of jobs [2]. In this paper we use soft real-time constraints instead, i.e., jobs may
miss their deadlines, at some cost. If they do, they are immediately removed from the system.
The objective is to design a dynamic speed policy for the processor that minimizes its average
energy consumption plus an obsolescence cost per deadline miss.

Under Poisson arrivals and exponentially distributed deadlines and job sizes, we show that
this problem can be modeled as a continuous time Markov decision process (MDP) with un-
bounded state space and unbounded rates. Inspired by the scaling method introduced recently
by Blok and Spieksma, we show the existence of an optimal speed profile that is increasing in
the number of jobs in the system and upper bounded by some constant, that does not depend
on the deadlines and arrival rates. In addition, it yields a simple approximation for the optimal
policy and several numerical tests show that such approximation is accurate in heavy-traffic
conditions.

2 Methodology and Main Result

We consider a DVFS processor whose speed can continuously vary in the interval [0, Spax]. We
consider that speed changes are immediate and induce no energy cost. When the processor
works at speed s, it processes s units of work per second while its power dissipation is w(s)
watts. We require that w(s) is continuous, increasing and strictly convex in the speed s.

Jobs join the system following a Poisson process with rate A\. Deadlines and job sizes are i.i.d.
exponentially distributed random variables with with rates 0 and u respectively. Without loss
of generality, we assume that g = 1. At any point in time ¢, the processor chooses its speed
s(t) and executes one of the jobs in its backlog queue.

2.1 Markov Decision Process

We formulate the problem of interest as an MDP whose state space is N and where the states
represent the number of jobs in the system. The action space is [0, Spax], i-€., the set of available
speeds for the DVFS processor. Let 0 = (0;);en denote a stationary and deterministic speed
policy adopted by the processor, i.e., 0; € [0, Smax| is the speed used in state ¢. It is well known
that focusing on stationary and deterministic policies can be done with no loss of optimality
in our case [3, Theorem 5.9].

The Markov chain X7 is ergodic under all policies o, therefore the long-run expected cost
exists. Letting [E? denote the expectation given a speed policy o, we have

T
J(o) :=lim supjl,é E%¢(X(t),0)dt.
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In this equation, the function c(-,-) is the expected cost incurred by the system at time ¢:
c(iyo) == Cid +w(oy).

Stationary policies that minimize J(o) are optimal speed policies for the model. Also, our
MDP satisfies all the conditions given in [3, Theorem 5.9] to assert the existence of an optimal
stationary deterministic policy ¢* and an optimality equation of the form
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where h* is a real function defined on N, usually referred to as bias of the optimal policy.

2.2 Structural properties of the optimal policies

The following theorem is our main result.

Theorem 1 There exists a deterministic optimal policy o* = (0])ien that is increasing in i
and upper bounded by B, where:

B:= argmin (w(s)+ C(A— us)). (2)
SERTU{+o0}

The optimal speed policy of the processor is always bounded by a finite constant, namely
min(B, Spax). We remark that B is independent of the arrival and deadline rate. Indeed, if
B is finite, one can set a priori the maximal speed of the processor to Smax := B, so that no
cost reduction would be possible by using a more powerful processor. If these parameters and
the power dissipation w were related to units of work instead of units of time, B would also
be independent of pu and therefore of all parameters.

Underlying the proof of our main result, there are some technical challenges that we now
discuss. The proposed MDP satisfies the regularity assumptions (stability, unichain) needed
to establish an optimality equation as described in [3]. However, this is not enough to show
structural properties of the optimal policy. In fact, the classical approach to do this is to
uniformize the MDP and to investigate the properties of the corresponding discrete time value
iteration operator. Unfortunately, this is not possible in our case because the transition rates
are unbounded. To uniformize the MDP, a typical approach consists of truncating the state
space. However, a naive truncation will not help here because the truncation barrier has a
strong impact on the structure of the optimal policy in the sense that it would not preserve
any monotonicity property that it may have without truncation. Instead, we use the technique
proposed by Blok and Spieksma in [I] on discounted costs, which smoothly scales down the
upward rates of the truncated system as a function of the size of its state space. Here, we use
the same truncation technique but we apply it to the average cost. In our specific case, the
convergence to the infinite system will be guaranteed by the monotone convergence theorem.
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