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1 Introduction
This paper develops a numerical method based on the backtracking line search for solving the following
nonlinear constrained problem. Let h : Rd → R and c : Rd → Rm (m ≤ d) be smooth functions (C1 at
least), with µh and µc-Lipschitz gradient. Let C be a closed convex subset of Rd, the problem is to

minimize h(x) subject to c(x) = b, x ∈ C, b ∈ Rm. (1)
The problem (1) models various nonlinear optimization problems such as the max-cut [6], gene-

ralized eigenvalue [10], clustering [8], and factorization problem in SDP [2, 3, 5]. The augmented
Lagrangian method (ALM) for the problem (1) implies{

xk+1 ∈ argminu∈C L(x, yk, ρk) := h(x) + ⟨x | yk⟩+ ρk

2 ∥c(x)− b∥2

yk+1 = yk + σk(c(xk+1)− b).
(2)

Finding xk+1 from (2) is the crucial step. Even when c is linear, the closed-form expression of xk+1
is not available. In the seminal work [2], authors have chosen a first-order limited memory BFGS
approach that employs a strong Wolfe-Powell line search, and the number of limited memory BFGS
updates that are stored equals three. Recently, attempts to relax (2) and several inexact Augmented
Lagrangian methods for constrained nonconvex problems have been investigated in [7, 13]. The former
[7] applies a general version of ALM with an aggressive updating rule for the penalty parameter to
nonconvex optimization problems with both equality and inequality constraints. The latter [13] applies
a proximal framework to nonconvex problems with nonlinear equality constraints. Beside these efforts,
the framework proposed in [9, 1, 11] can be applied to solve Problem (1). However, the primal step of
[9] and [1] requires a subsolver and is not explicit, respectively. In addition, the algorithmic framework
in [1] uses some additional conditions as in [1, Definition 3.1] and the boundedness of (yk)k∈N. Lastly,
the algorithm in [11] uses a inner loop to determine the penalty parameters (ρk)k∈N.

The objective of this paper is to develop an algorithmic framework based on the backtracking line
search for the (augmented) Lagrangrian function associated to the problem (1). We propose an efficient
numerical method relying on this algorithmic framework to solve problem (1).
2 Algorithm and Convergence
We propose the following algorithm where the dual update is the same as in (2) but the primal steps
are obtained by using the backtracking line search on the Lagrangian function φk = L(·, yk, ρk) under
the following conditions : for Z = C and Y = c(Z)− b,

µ0 = sup
x∈C
∥∇c(x)∗∥ < +∞ and (∃ζ ∈ ]0, +∞[)(∀(x, v) ∈ Z × Y ) ∥∇c(x)∗v∥ ≥ ζ∥v∥. (4)

The convergence of the proposed method is characterized in terms of the gradient mapping, feasi-
bility, and objective function as well as the convergence to stationary points.
Theorem 1 Suppose that (L(xk, yk, ρk))k∈N is bounded below, ∥∇c(xk+1)⋆vk+1 − ∇c(xk)⋆vk∥ ≤
µctk−1∥yk−1∥∥dk−1∥, and (4) is satisfied. Then (xk+1 − xk)/

√
tk → 0 and c(xk) − b → 0. Moreover,

under the additional qualification condition at x : −∇c(x)∗y ∈ NC(x) =⇒ y = 0, and infk∈N tk > 0,
every cluster point x of (xk)k∈N is a stationary point to the problem (1), i.e. there exists y ∈ Rm such
that c(x) = b, and −∇h(x) − ∇c(x)∗y ∈ NC(x). If (ρk, xk)k∈N is bounded and all assumptions hold
then (h(xk))k∈N is a convergent sequence.

3 Numerical Results
Among others, we execute by means of Octave code the Algorithm 1 for the SDP relaxation of the
dual of the primal max-cut problem : min ⟨C | P ⟩ subject to diag(P ) = 1, P ⪰ 0 on data sets [4].
This SDP relaxation is a particular case of (1) with h 7→ ⟨C | P ⟩, c : P 7→ diag(P ) and b = 1. The stop



Algorithm 1 ALM algorithm with backtracking
1: Initialization x0 ∈ C, y0 ∈ Rm, x−1 ̸= x0 σ−1 ≫ 1, ρ−1 > 0, ϵ ∈ ]0, µh/2[.
2: for k ← 0, n do
3: Select ρk ∈ ]0,∞[ such that

ξk := µh

2 −
ρk

2 ∥∇c(xk)∥2 > ε > 0, ρk∥c(xk)− b∥ ≤ σk−1∥xk − xk−1∥, ρk − ρk−1 < ϵσk−1

4: Compute vk = yk + ρk(c(xk)− b) and dk = −(∇h(xk) +∇c(xk)∗vk)µ−1
h .

5: Find tk > 0 and σk ≥ σk−1 such that φk(PC(xk + tkdk)) < φk(xk) + tk∆φk(xk, dk) +O((k + 1)−1−ϵ)

8(1 + ϵ)tk

(
ζ−1(

µ0σk + µc∥yk∥
))2
≤ σkξk

(5)

6: Update xk+1 = PC(xk + tkdk) and yk+1 = yk + σk(c(xk+1)− b)
7: end for

condition is declared when the relative gap against the value found by cvx-Matlab solver is < 10−5.
Computational times, number of iterations and optimal values are averaged over 20 executions. The
results are presented in the following table.

Dataset Optimal values #Iterations Computation Time
Our NLS FOAL Our NLS FOAL Our NLS FOAL

G1 -12083.172 -12083.174 -12083.185 2498 9124 7970 5.637 20.959 22.487
GD97b -15340.105 -15340.096 -15340.017 5656 4082 4805 0.944 1.068 1.018
LFAT5t -189.881 -189.883 -189.882 306170 689870 901120 69.405 129 159.22
Tr200b -1006.603 -1006.610 -1006.606 870 2125 1826 0.216 0.768 0.731
Tr20b -48.667 -48.667 -48.667 753 498 315 0.124 0.310 0.267
Tr500 -3014.463 -3014.463 -3014.463 1749 2314 3123 0.642 1.134 1.378
Sbbrail -834.049 -834.046 -834.056 2882 3543 5599 0.837 1.354 1.885
Sherman1 -279.532 -279.536 -279.533 4584 6407 7235 1.569 2.627 2.589

These results are then compared against those obtained with FOAL [11] and NLS-SDP [12] algo-
rithm. As it can be observed, for every data set, our Algorithm 1 performs much better than both
FOAL and NLS-SDP in terms of computational time. The same conclusion can be drawn for the
number of iterations except for the data sets GD97b and Tr20b.
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