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1 Introduction
This study formulates the design of a metasurface as an unconstrained optimisation pro-

blem. The objective function is assumed to be expensive to evaluate and the performance of
the optimisation process is assessed by the number of objective function evaluations. This cha-
racteristic of the problem motivates the use of a bayesian optimisation strategy called Efficient
Global Optimisation (EGO). An undesirable modeling property of a natural objective function
is solved by jointly minimising a necessary condition of optimality. We show numerically that
penalising the objective improves the speed and robustness of the optimisation process.

2 Problem Formulation
Metasurfaces are planar arrangements of unitary elements [1]. When impinging on a periodic

surface with unitary elements x ∈ Rd, an incident electromagnetic wave is reflected with a
given magnitude s(x) ∈ RF , where F is the number of frequencies at which Maxwell equations
are solved. The bandpass filter proposed by [2] is presented in Figure 1 and used as a case
of study to formulate the optimisation problem. We characterise an optimal response as any
function s(xopt) ∈ RF satisfying l ≤ s(xopt) ≤ u. The bounds l, u ∈ RF are piece-wise constant
functions of the frequency and presented in red and pink in Figure 2. An optimal frequency
response s(xopt) get close from zero at two resonant frequencies.

FIG. 1 – Multi-layer bandpass FSS FIG. 2 – Optimal response s(xopt) such that l ≤ s(xopt) ≤ u.

The optimisation problem is formulated as :
min
x∈Rd

f(x) (1)

The objective function takes the general form f(x) = g(s(x)) where s(x) : Rd 7→ RF is the
response vector and g(x) : RF 7→ R is minimum when l ≤ s(x) ≤ u holds.



3 Necessary Condition of Optimality
With the notations (z)+ = max(0, z), the vector of infractions of the bounds by the response

is defined as h(x) = (l− s(x))+ + (s(x)− u))+ ∈ RF . Since ||h(x)|| = 0 ⇐⇒ l ≤ s(x) ≤ u,
a natural objective function is M(x) = ||h(x)||. Assume that a response s(x) vanishes at a
frequency i but we have li ≥ si(x). The design x might be close from the optimum but is
highly penalised by ||h(x)||.

To better assess the filtering properties of the surface, we propose to apply autoconvolution
on the response and the bounds before measuring the infraction. We define the infraction of the
convolved response as H(x) = (S(x)− U)+ + (L− S(x))+ ∈ R2F−1, where the caligraphed
letters stand for the autoconvolution of the response S(x) = s(x) ∗ s(x) and the bounds
U = u ∗ u and L = l ∗ l. Note that we have ||h(x)|| = 0 =⇒ ||H(x)|| = 0.

4 Numerical Results
We apply the Efficient Global Optimisation [3] algorithm on problem (1), starting with 100

different initial design of experiments to train the gaussian process [4]. Three objective func-
tions are first minimised : ||h(x)||1, ||h(x)||2 and ||h(x)||∞. Naturally, the choice of objective
function impacts the optimisation process. The mean minimum value of the objective obtained
at each iteration is presented in Figure 3. We present the data profiles in Figure 4 where we
plot the percentage of converged runs given a budget of iterations. The least performing ob-
jective function is the minimax ||h(x)||∞ with 20% runs not converging with a budget of 200
evaluations. Since ||h(x)||1 is the best performing objective function, we penalise it with the
proposed necessary condition of optimality and minimise ||h(x)||1 + ||H(x)||1. We observe a
significant improvement when using the penalisation.

FIG. 3 – Average minimum value of the objective
function through the iterations.

FIG. 4 – Percentage of converged runs for a given
budget of evaluations
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