
Learning based heuristics for scheduling jobs with release dates
on a single machine to minimize the sum of completion times

Axel Parmentier1, Vincent T’kindt2

1 CERMICS, Ecole des Ponts, Marne-la-Vallée, France
axel.parmentier@enpc.fr

2 University of Tours,
LIFAT (EA 6300), ERL CNRS ROOT 7002, Tours, France

tkindt@univ-tours.fr

Mots-clés : scheduling, structured machine learning.

1 Introduction
Consider the problem where n jobs have to be scheduled on a single machine. Each job j is

defined by a processing time pj and a release date rj so that, in a given schedule, no job j can
start before its release date. The machine can only process one job at a time and preemption is
not allowed. The goal is to find a schedule s (permutation) that minimizes the total completion
time

∑
j Cj(s) with Cj(s) the completion time of job j in schedule s. If s = (j1, . . . , jn), then

Cj1(s) = rj1 + pj1 and Cjk
(s) = max(Cjk−1(s), rjk

) + pjk
for k > 1.

When there is no ambiguity, we omit the reference to schedule s when referring to completion
times. Following the standard three-field notation in scheduling theory, this problem is referred
to as 1|rj |

∑
j Cj and is strongly N P-hard [5]. When there is no release dates, the corresponding

1||
∑

j Cj problem can be solved in O(n log(n)) time using the SPT rule (shortest processing
times first).

The 1|rj |
∑

j Cj problem is a challenging problem which has been studied for a long time.
In this work, we focus on heuristic algorithms which can be used to compute good solutions
in a reasonable amount of time. Along the years, numerous heuristic algorithms have been
proposed. We cite the RDI (Release Date Improvement procedure) local search based on the
APRTF (Advanced Priority Rule for Total Flowtime) greedy rule proposed in [2] and which
requires O(n4 log(n)) time. The RBS heuristic (Recovering Beam Search) developed in [4] is a
truncated search tree approach that has been the heuristic with the best performances for a
decade. The RBS heuristic requires O(wn3 log(n)) time with w the beam width parametrizing
the heuristic : notice that in [4] the case w = 1 is considered. To the best of our knowledge, the
state-of-the-art heuristic is a matheuristic proposed in [3] which provides solutions very close
to the optimal ones but at the price of a large CPU time requirement.

In this work we propose learning based heuristics for the 1|rj |
∑

j Cj problem which are
compared to these milestones heuristics.

2 Learning based heuristics for scheduling
The use of machine learning (ML) techniques within operations research (OR) algorithms

is a recent but active and promising research area [1]. To the best of our knowledge, very few
contributions of this kind have considered scheduling problems. In these works, ML is used to
guide the solution process, i.e., the proposed OR heuristic. In this paper, we elaborate on an

Hard
problem

instance Γh

Easy
problem

instance Γe

Solution
se of Γe

Solution
sh of Γh

φθ

ML on Γe on Γh

Encoding
algorithm φθ

Easy problem
algorithm Ae

Decoding
algorithm ψ

FIG. 1 – ML to approximate hard problems by well-solved ones

original approach recently introduced in [6] and illustrated in Figure 1. A ML predictor φθ,
which we call the encoding algorithm, is used to convert an instance Γh of the hard 1|rj |

∑
j Cj

problem into an instance Γe of the 1||
∑

j Cj problem. The latter is called the easy problem as
it exists a practically efficient algorithm Ae to solve it (SPT rule). From an optimal solution se

of Γe, a decoding algorithm is used to rebuild a solution sh to Γh. Notice that, the processing
time p̂j of job j in Γe is not equal to its processing time pj in Γh, but to a linear combination
of features computed from Γh. Several different decoding algorithms are proposed to obtain a
schedule for the 1|rj |

∑
j Cj problem, thus leading to different heuristics.

The main challenge to make such an approach working is to build an encoding algorithm φθ

such that the optimal solution of the instance Γe leads to a good solution Γh after decoding. As
usual in ML, we first define an appropriate family of predictors (φθ)θ, and then seek (learn) the
best parameter θ. We formulate the choice of θ as a structured learning problem. Structured
learning algorithms on the permutation group have been thoroughly studied in the literature
on rankings, but with applications such as document retrieval or question answering that are
quite far from scheduling. If the traditional learning approaches of this literature can in theory
be applied in our context, we do not use them because the loss functions they use to evaluate
if a ranking is a good approximation of another are not good evaluations of the quality of a
1|rj |

∑
j Cj schedule. We instead propose a novel generic approach based on Fenchel-Young

loss functions which can be applied to a large set of hard problem [7].

Computational experiments show that the proposed learning based heuristics compete with
the state-of-the-art heuristics and enable to efficiently solve very large instances.

Références
[1] Y. Bengio, A. Lodi and A. Prouvost. Machine Learning for Combinatorial Optimization :

A Methodological Tour d’horizon. European Journal of Operational Research, 290(2) :405-
421, 2021.

[2] S. Chand, R. Traub and R. Uzsoy. An iterative heuristic for the single machine dynamic
total completion time scheduling problem. Annals of Operations Research, 23(7) :641-651,
1996.

[3] F. Della Croce, F. Salassa and V. T’kindt A hybrid heuristic approach for single machine
scheduling with release times. Computers & Operations Research, 45 :7-11, 2014.

[4] F. Della Croce and V. T’kindt A recovering beam search algorithm for the one-machine
dynamic total completion time scheduling problem. Journal of the Operational Research
Society, 53 :1275-1280, 2002.

[5] A.H.C. Rinnooy Kan. Machine sequencing problem : classification, complexity and com-
putation. Springer-Verlag, 1976.

[6] A. Parmentier. Learning to Approximate Industrial Problems by Operations Research
Classic Problems. Operations Research, 2021.

[7] A. Parmentier and V. T’kindt Learning to solve the single machine scheduling problem
with release times and sum of completion times. arXiv :2101.01082, 2021.

