
A Hybrid Algorithm for Solving the Multiple Knapsack
Problem with Setup

Samah Boukhari1, Isma Dahmani2, Mhand Hifi3

1 LaROMaD, USTHB, BP 32 El Alia, 16111 Alger, Algérie
2 AMCD-RO, USTHB, BP 32, El Alia, 16111 Alger, Algerie

{boukhari.samah.ro, dahmani.isma}@gmail.com
3 EPROAD, UPJV, 7 rue du Moulin Neuf, 80000 Amiens, France

hifi@u-picardie.fr

Mots-clés : Heuristic, knapsack, optimization.

1 Introduction

In real-time production, often the manufacturer prefers to act according to the orders re-
ceived from customers before starting to produce and then to supply. Such a case may be
encountered in several companies, where complex products should be provided, specialized
machines should be established, electronic circuits must be achieved, etc. On the one hand, the
real-time production remains the preferable option for any company, because it may products
according to the current demand. On the other hand, it is often necessary that the deadline
fixed by the customer remains compatible enough with the necessary production time. Some
customers prefer to pay a high price for a reduced production time, while others prefer to wait
for a reduced price (for more details, the reader can refer to Yanchun [6]). Therefore,

— one can assume that orders are distributed in classes such that each class contains orders,
— the production capacity related to the factory at period T is fixed,
— each order is characterized by its cost and its setup time, and
— each family is characterized by both a cost and a setup time.

Hence, such a problem can be modeled as the Multiple Knapsack Problem with Setup (namely
MKPS).

The MKPS is a combinatorial optimization problem, where its goal is to maximize the profit
of the selected items by adding a negative cost related to the classes containing the afore-
mentioned selected items. The MKPS can be viewed as a variant of the well-known Knapsack
Problem (noted KP) and an extension of the Knapsack Problem with Setup (noted KPS, cf.
Khemakhem and Chebil [3]). KPS is represented by a set of items divided into a set of classes,
where each class is characterized by both fixed cost and fixed capacity while an item can be
selected if the class containing the activated item.

The MKPS is a more complex version of KPS, where almost of one knapsack, there are T
knapsacks and in this case, the setup cost is related to its corresponding knapsack constraint.
As described above, these types of problems can be encountered in many real-world industrial
and financial applications, such as order acceptance and production scheduling, aviation secu-
rity system, resource allocation and transportation. (for more details, the reader can refer to
Boukhari et al. [1], Chebil and Khemakhem [2], Khemakhem and Chebil [3], McLay [5] and
Lahyani et al. [4]).

2 Problem definition
An instance of MKPS is characterized by a set of T knapsacks of different capacities rt, t ∈
{1, . . . , T}, and a set of m disjoint families (classes) of items. Each family i, i ∈ {1, . . . ,m}
consists of ni items and is characterized by a knapsack-dependent integer setup cost fit and
an integer parameter si representing its capacity consumption. Each item j, j ∈ {1, ..., ni} of
a family i is associated with a knapsack-dependent profit pijt and a capacity consumption wij .
An item can be selected only if the corresponding class is activated and a class can only be
setup in one knapsack. Furthermore, activating a class induces a knapsack-dependent setup
cost that should be considered both in the objective function and related constraints. The goal
of the problem is to maximize selected items from different disjoint classes without violating
the capacity constraints.

FIG. 1 – An instance of KPS.

FIG. 2 – An instance of MKPS.

Let xijt be the decision variable that is equal to 1 if item j of family (class) i is placed in the
knapsack t, 0 otherwise, and yit be the setup binary variable which is equal to 1 if family i is
placed in the knapsack t, 0 otherwise. Then, the formal description of MKPS (noted PMKP S

for the rest of the paper) can be stated as follows :

PMKP S : max
T∑

t=1

m∑
i=1

ni∑
j=1

pijtxijt −
T∑

t=1

m∑
i=1

fityit (1)

s.t.
m∑

i=1

ni∑
j=1

wijxijt +
m∑

i=1

siyit ≤ rt ∀t ∈ {1, ..., T} (2)

xijt ≤ yit ∀ i ∈ {1, ...m}, ∀ j ∈ {1, ..., ni}, ∀t ∈ {1, ..., T} (3)
T∑

t=1

yit ≤ 1 ∀ i ∈ {1, ...m} (4)

xijt ∈ {0, 1}, yit ∈ {0, 1}, ∀ j ∈ {1, ..., ni}, ∀ i ∈ {1, ...m}, ∀t ∈ {1, ..., T}, (5)

where the objectif function (1) maximizes the profit of selected items minus the fixed setup
costs of selected families(classes). Constraints (2) ensure that the weight of selected items in
the knapsack t, including all setup capacities related to the activated classes, does not exceed
the knapsack capacity rt. Constraints (3) ensure that an item j is selected in the knapsack t
iff it belongs to a family i with a setup in the knapsack t. Finally, constraints (4) indicate that
any family i is setup at most in one knapsack.

3 Hybrid algorithm for PMKPS

Let RPMKP S denote the problem provided by relaxing all xijt variables in PMKP S , providing
the relaxed problem RPMKP S . In order to propose a constructive solution procedure, we first

solve RPMKP S for providing a first solution (X,Y) ; then, fixing step by step the variables yit

to their binary values in PRMKP S . Second, let α be the number of variables yit fixed to one ;
thus, let α knapsacks problems whose variables xijt correspond to the classes yit = 1. Thus,
the optimal solution related to the series of knapsack achieves a complete feasible solution for
MKPS. The procedure used, for providing such a solution, can be described as follows :

— Solve RPMKP S(PMKP S with relaxing X variables) using a black-box solver, and let
(X,Y) be its optimal solution.

— Let Y ′ = Y , such as :
— Set S = {i ∈ I | y′it = 1} and K = {t | y′it = 1}, Let r′h = rh −

∑
i∈S si, h ∈ K.

— Let PKPh
, be the knapsack problems with capacity r′h and Xh, h = 1, . . . , |K|, be the

achieved optimal solution. Set X ′ = ∪h∈KXh and Y ′ = Y , return (X ′, Y ′).

PKPh
: max

∑
i∈S

ni∑
j=1

pijhxijh

s.t.
∑
i∈S

ni∑
j=1

wijxijh ≤ r′
h

xijh ∈ {0, 1}, ∀ j = 1, ..., ni, ∀ i ∈ S.

4 Highlighting the hybrid algorithm

Herein, we propose to enhance the hybrid method by including a series of valid constraints
to the original problem :

m∑
i=1

yit ≤ dt, ∀t ∈ {1, ..., T} (6)

In fact, constraint (6) is related to each knapsack t, where the number of classes fixed in the
solution must not exceed dt.

— We optimize the linear relaxation of PMKP S by using the simplex method. In this case,
let (X0, Y 0) be the provided solution, and D be the set related to the values dt, which is
associated to the number of y0

it nonnegative values in the tth knapsack.
— Let RPMKP S−V be the new model obtained by combining RPMKP S and the new addi-

tional constraints (6). We optimize RPMKP S−V by using a black-box solver. Let (X ′, Y ′)
be the provided solution.

— Set S = {i ∈ I | y′it = 1} and K = {t | y′it = 1}, Let r′h = rh −
∑

i∈S si, h ∈ K.
— Let PKPh

, be the knapsack problems with capacity r′h and Xh, h = 1, . . . , |K|, be the
achieved optimal solution. Set X ′′ = ∪h∈KXh and Y ′′ = Y ′, return (X ′′, Y ′′).

Algorithm 1 describes the main steps of the enhanced algorithm, where the valid constraints
are added to the original problem.

Algorithm 1 Enhancing the Hybrid Method
1: Solve the linear relaxation of PMKP S with the simplex method and let (X0, Y 0) be its optimal

solution.
2: Let Y 1 be the solution extracted from Y 0 such that
3: if

(
y0

it > 0
)

then
4: Set y1

it = 1
5: else
6: Set y1

it = 0
7: end if

8: Set D =
{

dt | dt =
m∑

i=1
y1

it, t = {1, ..., T}
}
and, let (X ′, Y ′) be the optimal solution of RPMKP S−V .

9: Set S′ =
{

i | y′it = 1
}
, K ′ =

{
t | y′it = 1

}
and, r′h = rh −

∑
i∈S si, h ∈ K ′.

10: Let PLKPh
, h = 1, . . . , |K ′|, be the knapsack of capacity r′h and Xh(h = 1, ...|K ′|) be an optimal

solution.
11: Set X” = ∪h∈K′Xh and Y ” = Y ′.
12: return (X”, Y ”).

5 Experimental Part

The objective of the computational investigation is to assess the performance of the Hy-
brid Method with and without adding the valid constraints and, by comparing their provided
bounds to the best bounds available in the literature. Because two versions are considered, we
then noted the fist version as HM (Hybrid Method) and EHM (Enhanced Hybrid Method)
for the second version employing a series of valid constraints. Both versions of the proposed
method are evaluated on the set containing 360 instances extracted from Chebil et al. [4]. Note
that all proposed solution procedures were coded in C and performed on a computer with an
Intel Pentium Core i3 with 2 GHz.

#Inst Hybrid Method Enhanced Hybrid Method
T m LBHM tHM LBEHM tEHM tGap

5 m ∈ {10, 20, 30} 338919.033 3.613 338919.166 3.576 -0.110
10 m ∈ {10, 20, 30} 578932.033 21.493 578932.033 27.670 -7.670
15 m ∈ {10, 20, 30} 799021.733 112.556 799021.900 21.710 -90.850
20 m ∈ {10, 20, 30} 982156.400 186.076 982156.466 55.106 -130.933
Average 674757.320 80.940 674757.390 22.020 -58.920

TAB. 1 – Behavior of the hybrid approach with and without adding the valid constraints : ten instances
of the group with objects in [40, 60].

#Inst Hybrid Method Enhanced Hybrid Method
T m LBHM tHM LBEHM tEHM tGap

5 m ∈ {10, 20, 30} 815420.566 8.730 815420.566 3.970 - 4.763
10 m ∈ {10, 20, 30} 1581942.566 37.126 1581942.566 13.140 -23.986
15 m ∈ {10, 20, 30} 2192423.666 704.760 2192423.666 28.406 -676.356
20 m ∈ {10, 20, 30} 2641255.066 1254.356 2641255.066 147.906 -1106.446
Average 1807760.470 501.240 1807760.470 48.350 -452.890

TAB. 2 – Behavior of the hybrid approach with and without adding the valid constraints : ten instances
of the group with objects in [60, 90].

Table 1 (resp. Tables 2 and 3) reports the results achieved by both HM and EHM on all

#Inst Hybrid Method Enhanced Hybrid Method
T m LBHM tHM LBEHM tEHM tGap

5 m ∈ {10, 20, 30} 534176.033 13.093 534176.133 7.616 - 5.476
10 m ∈ {10, 20, 30} 1018157.500 158.956 1018157.600 16.840 -142.116
15 m ∈ {10, 20, 30} 1411569.033 1443.953 1411711.500 43.085 -1400.866
20 m ∈ {10, 20, 30} 1816032.333 1881.383 1816672.133 370.143 -1511.343
Average 1194983.730 874.350 1195179.340 109.400 -764.950

TAB. 3 – Behavior of the hybrid approach with and without adding the valid constraints : ten instances
of the group with objects in [90, 110].

tested instances : LBHM and LBEHM are the average lower bound achieved by HM and EHM,
tHM and tEHM are the runtime needed by HM and EHM for reaching the final bound . finaly,
tGap denotes the gap between both versions (the negative value means that EHM performs
better than HM and, the value of bold-space means that the method performance better than
the other one) . In what follows, we comment on the results of Tables 1, 2 and 3 :

— From Table 1 (the group of instance with the ni ∈ [40, 60]), one can observe that EHM
performs better than HM. Indeed, on the one hand, it is able to provide an global average
bound of 674757.39, which is better than that achieved by HM, i.e., 674757.32. On the
other hand, adding the valid constraints induces a powerful method since the average
runtime limit is considerably decreased (the gap between both versions is equal to -58.92).
Finally, more the size of the instance increases, more the average gap (tGap) increases.

— From Table 2 (the group of instance with ni ∈ [60, 90]), we can observe that both versions
of the method match the same average lower bounds while the average runtime is much
smaller for the enhanced version EHM ; in this case, tEHM =48.35 sec while tHM =501.24
sec, which means that EHM is 10.37 faster than HM.

— From Table 3 (the group of instance with ni ∈ [90, 100]), we can notice that for large-
scale instances, EHM definitely performs better than the initial version. Indeed, more
the instances are complex to solve, more EHM surpasses the initial version. In this case,
tEHM varies from 7.616 sec (line 1, column 6) to 370.143 sec (line 4, column 6) while tHM
varies from 13.093 sec (line 1, column 4) to 1881.383 sec (line 4, column 4).

#Inst Cplex solver MTS VND&IP EHM
LBCplex LBMTS GapMTS LBVND&IP GapVND&IP LBEHM GapEHM

ni ∈ [40, 60] 674541.08 674756.96 -0.032003 674756.15 -0.031883 674757.39 -0.032067
ni ∈ [60, 90] 1806945.75 / / 1807760.33 -0.045080 1807760.47 -0.045088
ni ∈ [90, 110] 1193582.25 1195178.33 -0.133722 1195178.90 -0.133770 1195179.34 -0.133807

TAB. 4 – Computational power of EHM versus MTS, VND&IP and the Cplex solver.

The results provided by EHM are compared to those reported in Adouani et al. [?] (VND&IP :
VND combined with IP), in Lahyani et al. [4] (a two phase matheuristic, noted MTS) and the
state-of-the-art Cplex solver.

In what follows, we comment on the results reported in Tables 4 and 5 :
— Cplex versus other methods : MTS, VND&IP and EHM dominate the Cplex solver despite

several tunings applied to the solver settings.
— EHM versus MTS Tables 4 and 5 : one can observe that EHM outperforms MTS. Indeed,

EHM is able to achieve better global average lower bounds than those reached by MTS ;
EHM provides two (new) greatest average values for the instances whose objects belong
to [40, 60] and [90, 100] than those achieved by MTS.

— EHM versus VND&IP : over all tested instances Tables 4 and 5, it globally matches all
the best solution values achieved by VND&IP. The average improvement achieved by

EHM varies from 0.032067 to 0.133807 (Table 4).

#Inst Cplex solver (S) MTS (S) VND&IP (S) EHM (S)
tCplex tMTS tVND&IP tEHM

ni ∈ [40, 60] 2940.83 81.57 4.30 22.02
ni ∈ [60, 90] 2836.00 / 12.69 48.35
ni ∈ [90, 110] 3135.17 138.17 14.58 108.63

TAB. 5 – EHM runtime versus MTS, VND&IP and the Cplex solver.

6 Conclusion
In this paper the multiple knapsack problem with setup was tackled with a hybrid algorithm.

The proposed algorithm was designed for efficiently solving large-scale problem instances. The
performance of the proposed algorithm and its enhanced version were evaluated on benchmark
instances of the literature, where their provided results are compared to those reached by the
Cplex solver and the best methods available in the literature. According to the experimental
part, the computational power of the enhanced hybrid algorithm showed its ability to remain
very competitive.

Références
[1] Boukhari S, Dahmani I, and Hifi M. Effect of valid cardinality constraints in local bran-

ching : The case of the knapsack problem with setup. Information Technology in Industry,
vol. 8(3), pp. 8-20, 2020.

[2] Chebil K, and Khemakhem M. A dynamic programming algorithm for the knapsack pro-
blem with setup. Computers and Operations Research, 64, 40–50, 2015.

[3] Khemakhem M and Chebil K. A tree search based combination heuristic for the knapsack
problem with setup. Computers and Industrial Engineering, 99, 280–286, 2016.

[4] Lahyani R, Chebil K, Khemakhem M, Coelho C, Matheuristics for solving the Multiple
Knapsack Problem with Setup, Computers and Industrial Engineering 129 76–89, 2019.

[5] McLay, L. A. Designing aviation security systems : Theory and practice, 2006.
[6] Yanchun Y. Knapsack problems with setup. Dissertation, USA : Auburn University, 2006.

