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We consider the Ring Star network design, where we are given a complete mixed graph with both arcs
from and to every node, as well as edges between any pair of different nodes and a given node called
depot. The Ring Star Problem (RSP) is a NP-hard problem that consists in selecting a subset
of nodes including the depot, named hubs, and link them with a cycle to form the ring. Then each
non-hub node, called terminal, is connected to exactly one hub in the cycle, which is the star topology
part. The aim of RSP is to minimize the sum of three costs corresponding to (i) selecting the subsets
of hubs, (ii) linking the ring, and (iii) connecting the star.

RSP has been widely studied in the literature, Labbé et al. [3] proposed a Mixed Integer Programming
model, strengthened with valid inequalities studied with a polyhedral analysis and solved with a Branch-
and-Cut algorithm. Earlier, Xu et al. [5] solved with a tabu search a particular case of RSP where hubs
and terminals have to be selected from distinct subsets. An exact solution approach that takes advantage
of the fact that the depot must be in the ring can be found in Kedad-Sidhoum and Nguyen [2]. Calvete
et al. [1] have presented an evolutionary-based heuristic for solving RSP while Zang et al. [6] recently
introduced an ant colony system algorithm.

In this paper, we study the Robust Ring Star Problem, referred to as ρ-RSP. Let V be the
node set of the input graph, ρ-RSP has an additional input compared to RSP: Ṽ ⊆ V is a possibly
empty subset of nodes that can fail if they are selected as hubs. A hub in Ṽ is called uncertain because
it may fail, whereas a hub in V \Ṽ is called certain as it is not supposed to fail [4].

The ρ-RSP is to build a minimum cost subgraph ofG that
will always contain a ring-star topology even if a single
hub in Ṽ fails. By contrast with RSP, if a hub belongs
to Ṽ , an additional edge has to join its two neighbors in
the ring. This edge will be used if the hub in question
fails. Furthermore, each terminal is linked to the ring
either by a single hub in V \Ṽ (if there exist one), or by
connecting it to two hubs in Ṽ . The ρ-RSP is then to
design a minimum cost robust ring-star network. Thus,
it can be observed that ρ-RSP reduces to RSP when Ṽ
is empty. Figure 1 shows an illustration of the ρ-RSP
with Ṽ = V \ {1, 5, 6} where hubs are shown in red, and
terminals are shown in blue. It can be seen that terminal
10 is connected to two hubs, because they are uncertain.
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FIG. 1: An instance of the ρ-RSP with Ṽ =
V \{1, 5, 6}.

To the best of our knowledge, the ρ-RSP is a new problem in the literature. We have currently
formulated and implemented an Integer Linear Programming (ILP) model for ρ-RSP. We also present
a Benders decomposition that is composed by, first, a Master problem that determines which nodes will
be selected as hubs then link them with a cycle and, second, a subproblem that links terminals to the
ring and connects the two neighbors in the ring of all uncertain hubs. Both the master problem and the
subproblem are formulated as Integer Linear Programs.



Let the cost for connecting hubs i ∈ V and j ∈ V \ {i} be rij and the cost for linking terminal i to
hub j be sij . x̂ij and ŷjj are master problem’s fixed variables, ŷjj is set to one if node j is selected to
be a hub while x̂ij is set to one if both hubs i and j are connected in the master problem. Variables
x′

ij are one if an edge connects hubs i and j and yij is one if terminal i is connected to hub j and the
subproblem’s objective is to minimize the cost of the edges that should be added to cope with the failure
of uncertain hubs, plus the total star cost. The subproblem’s primal is stated as follows:

Minimize λ =
∑
i∈V

∑
j∈V
i<j

rijx
′
ij +

∑
i∈V

∑
j∈V \{i}

sijyij

∑
j∈V \Ṽ

i 6=j

2yij +
∑
j∈Ṽ
i 6=j

yij = 2(1− ŷii) ∀i ∈ V (1)

x′
ik ≥ x̂ij + x̂jk − 1 ∀(i, j, k) ∈ V 3 : j ∈ Ṽ , i 6= j, j 6= k, i < k (2)
yij ≤ ŷjj ∀(i, j) ∈ V, i 6= j (3)
yij ∈ {0, 1} ∀(i, j) ∈ V, i 6= j (4)
x′

ij ∈ {0, 1} ∀(i, j) ∈ V 2, i < j

Constraints (1) enforce that each terminal is connected to exactly two distinct hubs if these hubs are in
Ṽ , or to a single hub if it is in V \Ṽ . Constraints (2) enforce that for each hub j ∈ Ṽ having hubs i and
k as neighbors in the ring, there is an edge that joins i and k, that can serve when j fails. There are
1
2 ñ(n− 1)(n− 2) = O(ñn2) such inequalities where n = |V | and ñ = |Ṽ |. Constraints (3) ensure that a
terminal can only be linked to a hub. We propose to add a class of valid inequalities to the subproblem’s
primal, which guaranty that the continuous relaxation of the subproblem has an integral solution. The
subproblem, originally an integer linear program, can be stated as a linear program by adding the
following constraint: yik ≤

∑
j∈Ṽ \{k}:ŷjj=1 yij for all i ∈ V such that ŷii = 0, and for all k ∈ Ṽ such that

sik = min
j∈Ṽ :ŷjj=1 sij . If no such k exists, the constraint is not enforced. This constraint states that if

terminal i is connected to an uncertain hub, then it should be connected to at least another one. Since
(3) dominates (4), and because the objective function “pushes” the x′ variables downward, integrality
constraints can be dropped, and it can be shown that the linear relaxation of the subproblem (with the
new constraints above) has an integral optimal solution. This leads us to introduce a quadratic time
algorithm for addressing the dual of the continuous relaxation of the subproblem, which accelerates the
solution process of the Benders decomposition.

Numerical experiments are carried out to compare the results of the Integer Linear Programming
formulation and of the Benders decomposition. We observed that Benders decomposition currently
outperforms the ILP in instances where the ring is small, i.e. when there are few hubs.
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