
20 Years Xpress Mosel – Software design driven by application
needs and technological advances

Susanne Heipcke1, Yves Colombani1

Xpress Optimization, FICO, FICO House, Starley Way, Birmingham B37 7GN, UK
{SusanneHeipcke,YvesColombani}@fico.com

Mots-clés : mathematical modeling software, optimization, language design.

1 Introduction
At the occasion of the 20th anniversary of the first commercial publication of Xpress Mo-

sel (2001) this contribution takes the audience through the major phases of its development,
stressing as the two main drivers behind its design and evolution user requirements/usage
patterns and technological (hardware) advances. Particular focus is directed at the phase pre-
ceding the first publication during which the fundamental questions of whether, why, and how
to replace an established software (namely Mosel’s precursor mp-model [1], commercialised by
Dash Associates since 1983) had to be addressed.

2 Phases of software development

2.1 Phase 0 : Inception and design (1997–2001)

Target : match functionality of existing systems ; easy transitioning from precursor stan-
dalone command-line tool mp-model without any disruptive changes to user habits whilst
switching to an entirely new architecture that provides openings for a large variety of future
developments (in-memory data exchange [3], implementation of user modules [4]).

— First step : proof of feasibility — reading and executing existing mp-model files on the
new architecture (replacing an interpreted/script language written in Fortran and in parts
Assembly by parsing and compilation to a virtual machine implemented in C) without
any loss of efficiency or functionality (specifically the handling of sparse data structures).

— Second step : creating a new language in close collaboration with expert academic and
industrial users (most notably the group of Laurence Wolsey at CORE, Univ. Louvain-la-
Neuve, and the team of mathematicians at BASF AG, Germany, led by Anna Schreieck).

— Third step : development of tools and interfaces : ‘mod2mos’ converter, library APIs (C,
Java, VB), Xpress IVE (Interactive Visual Environment) as development environment
on Windows.

— Fourth step : finding a name (prototype phase : Mmod2 for ‘mp-model version 2’ with
file extension ‘mm2’, already using ‘bim’ for compiled files) ; the name ‘Mosel’ has no
specific meaning and is easy to pronounce ; naming convention ‘dso’ for Mosel modules.

2.2 Phase 1 : New directions for modeling : debugger and profiler, multi-
processor parallelism (2002–2008)

Target : make programming tools available for a modeling language ; exploit newly available
multi-processor machines for parallelising (decomposition) algorithms and other computational
tasks on the model level.



— Programming tools and functionality : debugger and profiler for the Mosel language ; new
programming-style data structures ; packages (libraries written in Mosel).

— Multi-processor parallelism : concurrent model execution within a Mosel instance coor-
dinated by event-based message queues ; also : multiple problems within a model.

— Modular building block : concept of generalized file handling (I/O drivers).
— New solvers and problem formulation paradigms (Nonlinear, Constraint Programming).

2.3 Phase 2 : Support for distributed computing (2008–2017)
Target : anticipate emerging new usage patterns, creating technology to enable working in

distributed settings including cloud architectures.
— Mosel Distributed Framework [5] and remote launcher (XPRD) provided the underlying

technical framework for Xpress Insight (platform for web-based apps with scenario hand-
ling based on Mosel models, first release in 2014).

— The newly introduced remote invocation protocol is used by a new browser-based deve-
lopment environment Xpress Workbench (first release July 2017) that replaces Xpress
IVE.

— Support for cloud platforms : aec2, hadoop ; related features : Unicode, internationalisa-
tion (message catalog selection based on system language configuration).

— Connectivity : data exchange with/invocation of other languages (R, Java, Python).

2.4 Phase 3 : Advanced programming needs (2017–now)
Target : address programming functionality needs of increasingly large software develop-

ment projects including connectivity, testing systems, and expectations of developers using
mainstream programming langagues ; provide tooling (high-level packages and low level func-
tionality for their implementation) for low-code development of end-user apps.

— End of 2017 Mosel was turned into free software in recognition of its increasing use as
general programming language, also opening up the matrix manipulation routines of the
Mosel Native Interface (NI) to provide access to alternative LP/MIP/NLP solvers [6].

— New advanced programming features for large-scale projects with multiple contributors :
dynamic packages, definition of namespaces, shared data, union types, online doc [7].

Références
[1] R. W. Ashford and R. C. Daniel. LP-MODEL : XPRESS-LP’s Model Builder. IMA Journal

of Mathematics in Management 1, 163–176, 1987.
[2] Y. Colombani, B. Daniel and S. Heipcke. Mosel : a Modular Environment for Modeling and

Solving Problems. In : J. Kallrath (ed.) : Modeling Languages in Mathematical Optimiza-
tion. Kluwer Academic Publishers, Norwell, 211–238, 2004.

[3] T. A. Ciriani, Y. Colombani and S. Heipcke. Embedding optimisation algorithms with
Mosel. 4OR, 1(2), 155–168, 2003.

[4] Y. Colombani, B. Daniel and S. Heipcke. Mosel : a Modular Environment for Modeling and
Solving Problems. In : J. Kallrath (ed.) : Modeling Languages in Mathematical Optimiza-
tion. Kluwer Academic Publishers, Norwell, 211–238, 2004.

[5] S. Heipcke. Xpress-Mosel : Multi-Solver, Multi-Problem, Multi-Model, Multi-Node Modeling
and Problem Solving. In : J. Kallrath (ed.), Algebraic Modeling Systems : Modeling and
Solving Real World Optimization Problems. Springer, Heidelberg, 81–114, 2012.

[6] Mosel Open Source repository. https://github.com/fico-xpress/mosel, 2017.
[7] Heipcke, S. and Colombani, Y. Xpress Mosel : Modeling and Programming Features for

Optimization Projects. In : J. S. Neufeld et al. (eds.), Operations Research Proceedings
2019. Springer, 677–683, 2020.

https://github.com/fico-xpress/mosel

	Introduction
	Phases of software development
	Phase 0: Inception and design (1997–2001)
	Phase 1: New directions for modeling: debugger and profiler, multi-processor parallelism (2002–2008)
	Phase 2: Support for distributed computing (2008–2017)
	Phase 3: Advanced programming needs (2017–now)


