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The usefulness of Mathematical Programming (MP), as a formal language for describing
optimization problems, resides in its solvers. Instead of devising a new algorithm for each new
problem, just model it using MP then deploy a solver on it. The smaller the class targeted by
the solver, and, as long as it contains the problem at hand, the higher the chances of obtaining
a good or even certified optimal solution. This process is now streamlined to a point that
there are high-level languages for MP (e.g. AMPL [4]), that automatically interface with most
high-quality solvers (e.g. [5, 2, 10]).

The issue arises when the problem instances exceed a certain size. Then all bets are off,
solvers can at most be used as heuristics, if at all. If for structured Linear Programs (LP)
the threshold size is in the millions of variables, dense unstructured LPs and most other MP
subclasses have much lower thresholds : from O(104) for some conic programs to O(100) or
even O(10) for complicated Mixed-Integer Nonlinear Programs (MINLP).

This is where Random Projections (RP) come in. RPs are simply k ×m random matrices
T , sampled componentwise from subgaussian distributions, that decrease the dimensionality
of a vector set X ⊂ Rm from m to k � m. The best known result in this area is the Johnson-
Lindenstrauss Lemma (JLL) [6], which applies to finite sets X with |X| = n, and states that
for a given ε ∈ (0, 1), if k = O(ε−2 lnn), then TX is ε-approximately congruent to X with high
probability, i.e.

∀i < j ≤ n (1− ε)‖Xi −Xj‖2 ≤ ‖TXi − TXj‖2 ≤ (1 + ε)‖Xi −Xj‖2

holds with probability exceeding 1− n(n− 1)eCε2k, where C is a “universal constant”.
The application of RPs to vectors is now well understood [11]. Their applications to opti-

mization problems with objective functions involving the `2 norm and convex constraints is
reasonably well understood [1, 9]. Other problems often occurring in Machine Learning (ML)
can also be treated with RP. The application of RPs to whole subclasses of MP, on the other
hand, is recent : in past works, we addressed LP [13], Semidefinite Programming (SDP) [8],
Quadratic Programs (QP) [12, 3], and some problems involving integer variables [14, 7].

The application of RPs to MP poses two serious issues, which require a detailed treatment for
each separate MP subclass : the fact that MP formulations are symbolic rather than numerical
entities, and the fact that a decision variable vector embodies a potentially uncountable set of
vectors : this makes the application of the JLL impossible, since it requires X to be finite.

Besides the theoretical advances we proposed in past works, most of our papers also carry
substantial computational sections, where we show to what extent one can hope to apply RPs
to a MP formulation and obtain a useful result.

My talk will focus on the empirical side of RPs for MP. I will discuss success and failure
stories, as well as technical difficulties to be overcome.
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